
Artificial Intelligence

Radboud University Nijmegen

Neuron Model Complexity

Exploiting the richness of single neuron dynamics in spiking neural networks

Author:
Steffen Ricklin
s1009136

Supervisors:
Dr. Renato Duartea,b

Dr. Matthieu Gilsonc,d

Shared second readers:
Dr. Nasir Ahmada,b

Dr. Mahyar Shahsavaria,b

September 25, 2023

a - Artificial Intelligence, Radboud University, The Netherlands
b - Donders Institute for Brain, Cognition and Behaviour, The Netherlands

c - Faculty of Medicine, Aix-Marseille University, France
d - Institut de Neuroscience de la Timone, Aix-Marseille University, France

Abstract
Training Spiking Neural Networks in a supervised fashion using backpropagation
has been problematic to outright impossible until very recently. A practical solution
to the problem of the non-differentiable partial derivative of the neurons’ spikes has
been found by approximating it by a smooth surrogate gradient. This method is
called Surrogate Gradient Learning and has been used in most studies in Spiking
Neural Networks built upon the fairly simple Leaky Integrate-and-Fire (LIF) neuron
model. Such networks can be trained to reach high performances comparable with
state-of-the-art Artificial Neural Networks. However, the LIF’s repertoire of firing
patters is limited compared to observations in biological neurons. The question
arises whether a more biological Spiking Neural Network can also be trained. In
this research project, we thus investigated what influence more complex neuron
models, that allow for richer sub-threshold dynamics and different firing regimes,
have on the performance of the models and the requirements on training these
networks. We hypothesized that neuron models with sub-threshold dynamics have
an advantage over the basic Leaky Integrate-and-Fire model if the data used has a
temporal component. Our results showed that these models can in fact be used in
the same fashion as Leaky Integrate-and-Fire models to train networks relying on
Surrogate Gradient Learning. On the one hand, networks that used the Izhikevich
or Adaptive Exponential Integrate-and-Fire neuron model achieved almost as good
performance as the LIF (although slightly worse). On the other hand, the Izhikevich
and Adaptive Exponential exhibited a better capability of generalization than the
Leaky Integrate-and-Fire, especially when trained on a dataset with a temporal
component.

1

Acknowledgements
First and foremost, I want to express my sincere gratitude to my supervisors,
Matthieu and Renato, for their extended supervision and support, and who first
proposed the project idea. The results presented in my thesis would be impossible
without your supervision. Next, I want to thank Kai for proofreading and giving
his valuable feedback on the written thesis. Finally, my heartfelt gratitude goes
towards my family and my friends, especially Peter, for their never-ending support
throughout this journey.

2

Contents

List of Figures 5

List of Tables 6

1 Introduction 7
1.1 Background and Motivation . 8

1.1.1 Supervised Learning and Backpropagation 9
1.1.2 Surrogate Gradient Learning 10
1.1.3 Motivation . 10

1.2 Choice of Neuronal Models . 11
1.2.1 LIF . 11
1.2.2 Izhikevich . 12
1.2.3 AdEx . 13

1.3 Outlook . 13

2 Methods 14
2.1 Network Architecture . 15

2.1.1 Spiking Hidden-Layer and Non-Spiking Readout-Layer 15
2.1.2 Weight Initialization . 16

2.2 Hardware . 17
2.3 Surrogate Gradient Learning . 17

2.3.1 Loss function . 18
2.3.2 Hyperparameter Tuning . 18

2.4 Discretized Neuron Models . 18
2.4.1 LIF . 19
2.4.2 Izhikevich . 19
2.4.3 AdEx . 20

2.5 Spiking Metrics . 21
2.6 Input Spiking Activity and Datasets 22

2.6.1 Input Encoding of MNIST data 22

3 Experiments 24
3.1 MNIST . 26

3.1.1 Hyperparameter Tuning . 26
3.1.2 Firing Regime Drift . 30
3.1.3 Firing Regime Comparisons 35

3.2 Spoken Heidelberg Digits . 37
3.2.1 Hyperparameter Optimization Studies 39

3

3.2.2 Firing Regime Drift . 40
3.2.3 Firing Regime Comparisons 43

4 Discussion 46
4.1 Conclusion . 48

References 50

A 55
A.1 Supplementary results of MNIST and SHD experiments 56

A.1.1 MNIST . 56
A.1.2 Heidelberg Spoken Digits . 58

A.2 Random Manifolds Dataset . 61
A.2.1 Hyperparameter Tuning . 61
A.2.2 Firing Regime Drift . 62
A.2.3 Firing Regime Comparisons 62

4

List of Figures

1.1 Computational graph for simulation and training of an SNN 9
1.2 Izhikevich - Firing patterns . 12

2.1 Schematic overview of the used SNN architecture 16

3.1 MNIST - Examples of input data (original and latency-encoded) . . . 26
3.2 MNIST - Results of hyperparameter tuning - LIF 29
3.3 MNIST - Network and Neuron statistics of SNNs - LIF 33
3.4 MNIST - Network and Neuron statistics of SNNs - Izhikevich 34
3.5 MNIST - Network and Neuron statistics of SNNs - AdEx 35
3.6 MNIST - Comparison of various firing regimes 36
3.7 MNIST - Accuracy differences per regime 37
3.8 SHD - Examples of input data . 38
3.9 SHD - Network and Neuron statistics of SNNs - LIF 40
3.10 SHD - Network and Neuron statistics of SNNs - Izhikevich 41
3.11 SHD - Network and Neuron statistics of SNNs - AdEx 42
3.12 SHD - Comparison of various firing regimes 43
3.13 SHD - Accuracy differences per regime 44

A.1 MNIST - Results of hyperparameter tuning - Izhikevich 56
A.2 MNIST - Results of hyperparameter tuning - AdEx 57
A.3 SHD - Results of hyperparameter tuning - LIF 58
A.4 SHD - Results of hyperparameter tuning - Izhikevich 59
A.5 SHD - Results of hyperparameter tuning - AdEx 60
A.6 RandMan - SNN losses and weight distributions 63
A.7 RandMan - Neuron statistics - LIF 63
A.8 RandMan - Comparison of various firing regimes 64
A.9 RandMan - Accuracy differences per regime 64

5

List of Tables

2.1 Settings for firing regimes - Izhikevich 20
2.2 Settings for firing regimes - AdEx . 21

3.1 Hyperparameter ranges for Optuna studies 27
3.2 MNIST - Selected hyperparameters for SNNs 31
3.3 MNIST - Regime accuracies . 37
3.4 SHD - Dataset specifications . 38
3.5 SHD - Selected hyperparameters for SNNs 39
3.6 SHD - Regime accuracies . 43
3.7 SHD - Regime accuracies differences 45

A.1 RandMan - Selected hyperparameters for SNNs 62

6

Chapter 1

Introduction

7

S. Ricklin Neuron Model Complexity

In this research project, we studied the impact of using biologically plausible neuron
models in Spiking Neural Networks in combination with a recent learning method.
Previous research with focus on that learning method included the use of a standard
but simplistic and less biologically plausible neuron model. In the global search
for more energy-efficient methods of machine learning research is again and again
returning to the human brain, the most energy-efficient biological supercomputer
known to us, to take inspiration from insights in cognition and learning. It was thus
a logical next step to extend the research on this recent learning method by applying
it to more biologically plausible neuron models.

The first section of this chapter focuses on giving the reader a brief overview of pre-
vious research, with focus on supervised learning, Spiking Neural Networks (SNNs)
and the above mentioned learning method, and states the motivation behind the
research that was conducted in this project (Sec. 1.1). It is then followed by an
introduction to the neuron models that our research focused on (Sec. 1.2) . Fi-
nally, Sec. 1.3 gives an outline of the structure and contents of the remaining chap-
ters.

1.1 Background and Motivation

The understanding of cognitive functions is a fundamental question in neuroscience.
In particular, a long-standing line of research has investigated how neurons collec-
tively perform operations to implement complex functions [51]. One of the most
studied cognitive function at the ”microscopic” level for neuronal networks (consid-
ering them individually) is classification, which aims to map input stimuli to output
patterns that represent categories or classes. Input stimuli can be either static like
images in the context of visual recognition or time series like sounds in the context
of auditory recognition. In deep learning, specific architectures to connect neurons
and training algorithms have been designed to implement efficient input-output
mappings [54].

The recent success of deep learning arises from very large datasets and the wide-
spread use of auto-differentiation [30]. However, these very powerful models involve
a huge number of parameters and thus consume large amounts of energy to be
trained, but also to use them as they typically require supercomputers. Although
these models take inspiration from insights we gained from studying the human
brain, they are nowhere near the low energy consumption and high learning effi-
ciency of the brain [57]. A key difference here lies in the computational units that
represent neurons in such networks: broadly speaking, we can discriminate between
artificial neural networks (ANNs) that rely on analog neurons, like the perceptron
[6] which processes continuous variables and spiking neural networks (SNNs) which
rely on simulated neurons which process events (action potentials in biology) [39][20].
A claimed advantage of SNNs is that this spiking behavior approximates real-life
neuronal systems more closely than ANNs [42]. Moreover, from an engineering per-
spective, a strong advantage is that they are much more energy-efficient than analog
neurons and thus hold promises to design embedded ”intelligent” systems for au-
tonomous robot agents dealing with real-life problems [45][21], like spatial navigation
in a natural environment [52][53].

Chapter 1 8

S. Ricklin Neuron Model Complexity

1.1.1 Supervised Learning and Backpropagation

Auto-differentiation methods to train ANNs rely on the error backpropagation (BP)
algorithm [47], which has been proposed decades ago to optimize connectivity weights
between the neuron layers in feedforward ANNs. BP is done by efficiently applying
the chain rule on partial derivatives (backward step) of every forward computational
step on the network’s classification error with respect to the input data. These par-
tial derivatives are then used to adjust the connection weights according to their
contribution to the error, solving the credit assignment problem [47][30]. Every for-
ward computation is therefore required to be differentiable in order to compute the
partial derivatives. Nowadays, auto-differentiation is automatized in framework like
PyTorch [38] or TensorFlow [25].

Artificial neurons like the perceptron [16] are known to work reasonably well. How-
ever, they are over-simplistic models of how the brain’s neurons actually communi-
cate: in the form of spikes. Over the course of the past two to three decades many
more models have been developed that approximate the spiking nature of biological
neurons [39][20][42]. Amongst others, Wang et al. [54] give an overview of the many
approaches one could take to model SNNs. Basically, it is possible to simulate a
SNN in discrete time to use the powerful tools developed for ANNs. A typical lay-
out of the computations involved to train a (recurrent) SNN is shown and explained
in Fig. 1.1. Auto-differentiation is widely applicable to various types of SNNs, in-
cluding recurrent; however, as a first step, we focused on strictly feedforward SNNs
here.

Figure 1.1: Spiking Neural Network graph. The graph shows the state variables of
the network going through different time steps from left (t = 0) to right (t = 4)
[60]. The binary vector S1[t] represents the spikes in layer 1 at time t, whereas the
binary vector S1[0] represents the input layer of the network. The vectors I1 and
U1 respectively describe the current and voltage in layer 1. The weight matrix W (l)

corresponds to forward connections and modulates the contribution of each input
spike of layer 0 to the current I(1) in the next time step. Likewise, the weight matrix
V (l) corresponds to the recurrent connections. The parameters α and β are involved
in the update of U and I from a time step to the next. The discretization of the
time steps is described in more detail in the SpyTorch tutorial 1 [60] [61]. Image
source: https://github.com/fzenke/spytorch.

There are various domains of research of SNNs, each having their own benefits
and drawbacks [54][55][13]. The focus of this research project will be on single-layer

Chapter 1 9

https://github.com/fzenke/spytorch/blob/main/notebooks/figures/snn_graph/snn_graph.png

S. Ricklin Neuron Model Complexity

learning of networks with varying neuron models and network architectures by using
BP. The use of spiking neuron models was a problem in the past because backprop-
agation through an action potential was impossible due to the non-differentiable
nature of spikes. Neftci et al. [35] summarized several approaches to solve this prob-
lem for supervised learning; one of the presented solutions was Surrogate Gradient
Learning (SGL).

1.1.2 Surrogate Gradient Learning

Spiking neurons are non-differentiable because of the discontinuity of the voltage
when a spike is elicited. Non-differentiable computations corrupt the training of a
network’s connection weights because the necessary gradients cannot be computed.
Depending on the framework and configuration of the network training process,
the training either fails and stops completely or only the weights up to the non-
differentiable are updated according to the flow of the gradients. SGL circumvents
this problem by replacing the derivative of the spiking non-linearity by a surrogate
smooth function [61].

So far, SGL has mainly been shown to work with SNNs of integrate-and-fire neu-
rons, leaky integrate-and-fire (LIF) neurons to be precise [35][61]. There are few
exceptions, e.g. the resonate-and-fire neuron that has been used in combination
with a similar method to replace and approximate gradients at spike time [2][56].
The LIF neuron model provides a neuronal model with spiking behavior, but its
simple sub-threshold dynamics and firing mechanism can only partially explain the
diversity of spiking patterns biological neurons show [48][33].

In this research project, we examined how SGL works with different mathematical
neuronal models that exhibit rich spiking behaviors as is observed in biology [48][33].
The focus here is thus on a systematic study of what happens when different types
of neurons and varying firing regimes are used for the same task.

1.1.3 Motivation

This project was motivated by the understanding of neuronal computations in the
brain, focusing on classification as one of the fundamental operations performed
by neuronal networks in the brain. This line of research has been active for many
decades [51][19][27].

The good cost-benefit trade-off of the LIF model has lead to its widespread use in the
research of SNNs. The benefits of the model are its computational efficiency and
remarkably well approximation of expected spiking behaviors which even enables
the solving of more complex problems. The drawbacks are that the model is very
simplistic compared to more biologically plausible models that allow for features
like sub-threshold or spike adaptation. The LIF model therefore lacks the range of
spiking behaviors that those complex models and the human brain show. Hence, we
argue that it is important to show that neuron models that offer different spiking
behaviors can be used as well as the LIF neuron in SNNs that implement SGL.

Chapter 1 10

S. Ricklin Neuron Model Complexity

Impact and Importance

A better insight into when to use particular neuron models will enable us to build
more powerful and efficient spiking neural networks, better suited to extract specific
input patterns in spike trains. We aimed to identify which neuron models offer an in-
teresting cost-benefit trade-off for a certain task like classification. We hypothesized
that networks with models that display more complex behaviors result in better per-
formances with an equal number of neurons per layer or similar performances with
less neurons per layer which ultimately makes the networks more efficient.

Similar to the above point, models with a richer variety of spiking behaviors than
the LIF model may allow for a sparser spiking activity to achieve similar perfor-
mances due to their more complex sub-threshold dynamics. Sparser spiking activity
is relevant in keeping a network energy efficient without trying to lose important
information [41][29][19].

The study of SNNs in terms of computational power for classification tasks has only
started in the past decade. Previous research has to the best of our knowledge
mainly focused on versions of the LIF neuron model and not a comparison between
it and other neuron models. The interplay between the (local) neuronal dynamics
and the (global) network function is not well understood for spiking neurons and
is the core of our study. This also has important implications for the design of
neuromorphic hardware [58][5][52].

1.2 Choice of Neuronal Models

This section gives an overview about the dynamics of the different spiking neuron
models that were chosen and implemented here. Within the scope of this project
the focus was set on using voltage-based models of neurons that extend the dy-
namics and emerging properties of simple Integrate-and-Fire models like the LIF
by a substantial amount. Over the last three decades many neuron models haven
been developed [42][55]. In this project, we implemented three of those models
which are described in the following paragraphs. Note that complex models such as
the Hodgkin-Huxley model which is a biologically very realistic conductance-based
model were out of the scope of the project because they cannot be easily realized
with the SGL method.

1.2.1 LIF

The Leaky Integrate-and-Fire (LIF) neuron model is a fundamental model of an
individual neuron that has been used for many decades [28][10] and is widely used
in computational neuroscience due to its computational efficiency and simplicity,
also in the context of SNNs with auto-differentiation [35].

The LIF model consists of a membrane potential (for the soma, or neuronal cell
body) and a threshold to produce output spikes that propagate via the axon toward
target neurons. In essence, the membrane potential integrates pre-synaptic (from
source neurons) currents by summing them over time; when it exceeds the threshold,
an output spike is fired and the membrane potential is reset to a lower value. The
continuous update equation of the membrane potential and the formulation of its

Chapter 1 11

S. Ricklin Neuron Model Complexity

reset are given in Eq. (1.1) and Eq. (1.2) respectively.

τmem
dV

dt
= −(V (t)− Vrest) +RI(t) (1.1)

V (t) ≥ 1 → V (t) = 0 (1.2)

Here τmem is the membrane time constant, V (t) is the membrane potential, Vrest

is the resting potential, R is the input resistance and I(t) is the input current
[18][35].

1.2.2 Izhikevich

Compared to the LIF neuron which has linear sub-threshold integration of synaptic
inputs, the Izhikevich neuron involves another variable in addition to the membrane
potential, which allows for intrinsic adaptation as well as a variety of firing patterns
[23]. This makes the Izhikevich neuron much more versatile than the LIF neuron to
reproduce a variety of different firing patterns (Fig. 1.2) that have been observed in
the biology for different types of neurons. For example, fast-spiking (FS) and low-
threshold spiking (LTS) neurons are associated with inhibitory neurons, whereas
regular spiking (RS), intrinsically bursting (IB) and chattering (CH) neurons are
more associated with excitatory neurons [23]. The linear LIF neuron is only able
to produce a firing pattern that is close to the RS firing pattern of the Izhikevich
neuron.

regular spiking (RS) intrinsically bursting (IB) chattering (CH) fast spiking (FS)

40 ms

20 mV

low-threshold spiking (LTS)

p
a

ra
m

e
te

r
b

parameter c

p
a

ra
m

e
te

r
d

thalamo-cortical (TC)

-87 mV

-63 mV

thalamo-cortical (TC)

peak 30 mV

reset c

reset d

decay with rate a

sensitivity b

v(t)

u(t)

0 0.1

0.05

0.2

0.25

RS,IB,CH FS

LTS,TC

-65 -55 -50

2

4

8

IB

CH

RS

FS,LTS,RZ

TC

0.02

parameter a

resonator (RZ)

RZ

v(t)

I(t)

v'= 0.04v 2+5v +140 - u + I

u'= a(bv - u)

if v = 30 mV,

then v c, u u + d

Figure 1.2: depicts the different spike patterns the Izhikevich neuron can produce.
Electronic version of the figure and reproduction permissions are freely available at
www.izhikevich.com (also see www.izhikevich.org/publications/spikes.htm).

Chapter 1 12

www.izhikevich.com
http://www.izhikevich.org/publications/spikes.htm

S. Ricklin Neuron Model Complexity

The update equations for the membrane potential v and the membrane recovery
variable u are shown in Eq. (1.3) to Eq. (1.5).

v̇ = I + v2 − u (1.3)

u̇ = a(bv − u) (1.4)

v ≥ 1 → v = c, u = u+ d (1.5)

Here, I is the input current and u is the membrane recovery variable which accounts
for activations of K+ ionic currents and inactivation of Na+ ionic currents. The
constants a to d define certain properties which result in different spike pattern:
a is the timescale of u, i.e. the smaller a gets the slower u’s recovery, whereas b
represents the sensitivity to sub-threshold fluctuations of v. c and d are the reset
potentials of v and u respectively.

1.2.3 AdEx

The second and final model that we used to explore and extend the use of SGL
is the Adaptive Exponential Integrate-And-Fire (AdEX) model [9] which has been
used in a lot of studies [14][40][4] because of it more realistic biological dynamics
and extends the features of the LIF and Izhikevich models [34][17].

1.3 Outlook

This thesis project aimed for a proof of concept that addresses the following ques-
tions:

• can biologically plausible homogeneous networks be trained using SGL?

• can temporal relationships in data be better classified by such/ networks?

• can variability in firing regimes impede or boost network learning and perfor-
mance?

The structure of the remainder of this thesis will be outlined here. Chapter 2 fol-
lows the current chapter and explains the methods used to conduct and analyze
the experiments of this project as well as the implementation of the SNNs and the
discretized form of the three neuron models mentioned above. Next, chapter 3 cov-
ers the experiments (including datasets) and their results. For each dataset three
experiments were conducted: in the first experiment a hyperparameter search for
each neuron model aimed to optimize performance and determine influential fac-
tors for training (Sec. 3.1.1, 3.2.1). Experiment two investigated whether network
training resulted in changed connection weights that move a neuron model out of
its intended firing regime (Sec. 3.1.2, 3.1.3). And last but not least, in the third ex-
periment the suite of used firing regimes was extended by additional (non-regular)
firing regimes. With that, we aimed to study the regimes’ influence on SNN perfor-
mance (Sec. 3.2.2, 3.2.3). Chapter 4 closes this thesis off with a discussion on and
a conclusion about the reported results as well as a perspective on suggested future
steps.

Chapter 1 13

Chapter 2

Methods

14

S. Ricklin Neuron Model Complexity

We explored the performance of the different neuron models in a variety of datasets
consisting of spike trains fed to the network. The presented datasets in this thesis
are spike trains generated from static images (handwritten digits) from the MNIST
dataset [31] and the Spoken Heidelberg digits (SHD) dataset [11], as well as the
synthetic Random Manifold (RandMan) dataset in Appendix Sec. A.2.

In this chapter, we present the methods used to conduct the computational experi-
ments for the MNIST (Sec. 3.1) and SHD (Sec. 3.2) datasets. From more broad to
more specific, these methods are comprised of the architecture of the SNNs (Sec. 2.1),
the hardware setup on which the experiments ran (Sec. 2.2), the implementation of
SGL (Sec. 2.3), followed by the descriptions of the three neuron models in their
discrete form (Sec. 2.4) and the metrics used to analyze the training quality of a
SNN and its neuron population statistics (Sec. 2.5). Furthermore, we describe the
input encoding for the MNIST dataset (Sec. 2.6).

2.1 Network Architecture

Implementation and training of the network was done using PyTorch [38]. The
Adam optimizer [26] was used for the optimization step after computing the gradi-
ents.

All implemented and trained SNNs consisted of an input layer, a single hidden layer
(HL) and an readout (or output) layer. A single hidden layer was sufficient for the
fundamental type of research of this project. The number of nodes in the input
layer, i.e. its size, was dependent on the number of features of the dataset (see start
of section 3.1 and Tab. 3.4).

The input ’neurons’ were only transmitting the input spikes to the HL and the output
layer, whereas the HL and output neurons simulated actual neuron models.

2.1.1 Spiking Hidden-Layer and Non-Spiking Readout-Layer

The size of the HL influences the capabilities of a neural network drastically: too
small and the network can not learn its task and underfits; too large and the network
is prone to overfit on the training data. Thus, it was sensible to optimize the HL size
in a hyperparameter tuning experiment (Sec. 2.3.2). For all successive experiments
the HL size was set to 800 neurons. The HL was comprised of spiking neurons of the
models that are compared in this thesis. In other words, either LIF, Izhikevich or
AdEx neurons were used as neurons in the HL. Every network only had homogeneous
HLs. This means the layer contained only one type of neuron, with every neuron
configured to operate in the same firing regime. Mixed-regime layers were out of
scope for this project.

The output layer size was determined by the number of classes the network was
supposed to classify. For all datasets the data of 10 classes was selected which
means that the output layer had 10 output neurons. The output layer is used for
making the classification prediction to which class the given stimuli in the input
layer belonged to. In this layer, all neurons were Leaky Integrate neurons without
spiking behavior. The predicted class will be the neuron with the highest activity
over the full simulation time [60][61].

Chapter 2 15

S. Ricklin Neuron Model Complexity

Figure 2.1: Schematic overview of the SNN architecture that we used. The input
layer has nIn = 784 and nIn=700 spike trains for the MNIST and SHD datasets
respectively. The final networks consisted of nHL = 800 neurons in the hidden layer,
for each neuron type. The Readout layer size was nOut = 10 neurons for the 10
classes.

Neurons in the network had full (all-to-all) connectivity. With one HL, each networks
had two matrices of connection weights, WIn→HL and WHL→Out. Training aimed to
optimize connection weights in both weight matrices.

The full network architecture is depicted in Fig. 2.1 as schematic overview, including
its layer sizes.

2.1.2 Weight Initialization

Initialization of the weights was done using traditional Kaiming He initialization
[22][60] which was sufficient for the single layer implemented SNNs. An alternative
would have been to use Fluctuation Driven Initialization which was developed to
enable more data-specific initialization of LIF SNNs that use SGL and resolve the
problem of vanishing surrogate gradients in larger networks [46].

The weightsW are sampled from a Gaussian distribution as shown in Eq. (2.1)

W ∼ N (µ, σ) , with µ = 0, σ =
∆w

slayer2
(2.1)

where ∆w represents the initial weight scale and slayer the size of the pre-synaptic
or incoming layer for the respective weight matrix, i.e. the size of the input layer
for WIn→HL and the size of the HL for WHL→Out.

For enabling the network to learn at least a few neurons must elicit spikes. A
’silent’ SNN does not learn which could be compared to ANNs that is initialized
with only equal connection weights. Conversely, a network of too many neurons
with extremely high spiking activity will not be able to learn. It is thus necessary

Chapter 2 16

S. Ricklin Neuron Model Complexity

to select a suitable scaling of the initial weights using ∆w. Because different neuron
models are sensitive to input spikes in varying degrees as well as to different kind
of data, ∆w was trained as a hyperparameter in the hyperparameter optimization
experiments.

2.2 Hardware

All networks that are discussed in this report were each trained on a GPU cluster
with 10 Quadro RTX 6000 GPUs. Each of these GPUs had a memory of 22.5 GiB.
Every network only required a single GPU each so that some simulation were done
in parallel.

Training times per SNN (50 epochs, 800 HL neurons) were shortest for the SHD
dataset with on average 6 min of training for each neuron model. SNNs trained
on RandMan data took around 29 min for LIF, 30 min for Izhikevich and 25 min
for AdEx SNNs. Training of SNNs on the MNIST data (largest dataset) took the
longest with on average 1:55 h for LIF, 2:05 h for Izhikevich and 2:16 h for AdEx
SNNs.

Training of the network was done using batches. The number of samples in a batch,
the batch size, affects concepts such as overfitting of the SNN on the train data and
generalization to new input samples. Therefore, the batch size was included in the
hyperparameter optimization experiments (Sec. 3.1.1 and 3.2.1) as well.

2.3 Surrogate Gradient Learning

Eq. (2.2) shows the surrogate gradient function SuperSpike for the gradients of spikes
which was adapted from Zenke et al. [60][59][35].

∂f

∂x
=

∂g

∂f

1

(∆SG · |x|+ 1)2
(2.2)

Here, the gradient ∂g
∂f

of the previous computation (first term) is multiplied (chain

rule) with the gradient of the spike (second term). Variable x is the input from
the forward pass which was computed as V [t] − Vthresh and is thus positive for
V [t] > Vthresh when spikes occur. Variable ∆SG determines the scale of the surrogate
gradient (SG scale): the larger ∆SG the smaller the gradient.

The surrogate gradient computation was designed for the LIF neuron which is nor-
malized to operate between 0 ≤ V [t] ≤ 1, for which Zenke et al. [61] determined
∆SG = 100 to work well. The other neuron models were not normalized to this
range. Consequently, it was reasonable to assume that the Izhikevich and AdEx
required smaller SG scales. In small feedforward SNNs the SG scale is not as in-
fluential as in SNNs with recurrent networks [61]. However, this was only tested
for LIF SNNs. Therefore, we included the SG scale as another hyperparameter
for the hyperparameter optimization experiments to find suitable SG scales for the
Izhikevich and AdEx models.

Chapter 2 17

S. Ricklin Neuron Model Complexity

2.3.1 Loss function

SGL is shown to work well for different loss functions as well as input paradigms
and data sets [61]. Here, we used the LogSoftmax and the negative log-likelihood
(NLLLoss) methods from PyTorch [38] as a loss function to compute the cross
entropy classification loss which was also used in SpyTorch [60][61].

Biological neurons are shown to exhibit relatively sparse spiking [36]. To mirror
this behavior, we added a loss term for activity regularization [61] of neurons to the
total loss computation. It has been shown that adding the activity regularization to
the loss function can achieve sparse activation while maintaining similar functional
performance of the model [61]. The implemented loss is the L2 loss, further called L2
penalty, as implemented in Zenke et al. [60] which enforces SNNs to use lower average
number of spikes per neuron. The influence of the L2 penalty could vary per neuron
model. Therefore, the L2 penalty was another hyperparameter to explore.

2.3.2 Hyperparameter Tuning

We conducted a hyperparameter optimization experiment for each dataset and neu-
ron model due to the many hyperparameters mentioned above that may impact the
performance of SGL (Sec. 3.1.1 and 3.2.1). The hyperparameter optimization was
implemented using the framework Optuna [1]. Optuna is a black-box optimizer and
is explained in further detail in section 3.1.1. The search was configured for the
hyperparameters HL size, batch size, learning rate, L2 penalty, initial weight scale
and SG scale because of previously mentioned reason.

The main goal of the hyperparameter optimization was to find out whether different
neuron models can be trained with similar hyperparameters.

2.4 Discretized Neuron Models

Simulations of any real-world continuous systems must be done in discrete time
steps on regular (digital) computing systems. Consequently, the simulation of the
described neuron models in section 1.2 must be done in discrete time. Here follow
descriptions of the discrete form of the LIF, Izhikevich and AdEx model. Following
the approach developed for the LIF model [35][61], we derived similar equations
for the other neuron models to be trained with auto-differentiation (e.g. SGL) in
networks for classification.

Generally, for all models it holds that the update of the synaptic input current Isyn
is formulated by Eq. (2.3)

Isyn[t+ 1] = Isyn[t] · e
− dt

τsyn + Iin[t] (2.3)

which computes the next time step (t + 1) for the Isyn. The exponential term
determines the decay of the membrane current. Here, the time constant for the
synaptic exponential decay is τsyn = 5 · 10−3. For all neuron models it further
held that the simulation time resolution was set to dt = 10−3. The summed input
current Iin[t] of weighted pre-synaptic currents connects pre-synaptic neurons to the
post-synaptic neuron.

Chapter 2 18

S. Ricklin Neuron Model Complexity

2.4.1 LIF

Here, the LIF model relies on a discrete-time implementation (Sec. 1.2.1), which
has been proposed for simulation using modern auto-differentiation frameworks like
PyTorch or Keras [38], [61][25].

Equation (2.4) describes the neuron’s membrane voltage update (V [t+ 1]).

V [t+ 1] = e−
dt

τmem · V [t] + Isyn[t] (2.4)

Here, the exponential term describes the exponential decay of the membrane voltage
over time, with a time resolution of dt = 10−3 seconds and the membrane time
constant τmem = 10−2. These values are adapted from Zenke et al. [60]. The time
resolution dt was the same for all neuron models.

If the membrane voltage reaches a threshold of Vthresh = 1 mV then V is reset to 0,
as described by Eq. (2.5).

V [t] =

{
V [t] if V [t] < Vthresh

0 otherwise
(2.5)

For the LIF it holds that, without any input, the resting potential Vrest of the neuron
is equal to the after-spike reset potential Vthresh.

2.4.2 Izhikevich

Compared to the LIF model, the Izhikevich neuron involves two dynamic variables,
as can be seen in Eq. (1.3) and Eq. (1.4), so there are two update equations.

The voltage update of the next time step V [t+ 1] is described by Eq. (2.6) and the
adaptation update U [t+ 1] by Eq. (2.7).

V [t+ 1] = V [t] + dt (0.04 · V [t]2 + 5 · V [t] + 140− U [t] + Isyn[t]) (2.6)

U [t+ 1] = U [t] + dt (a (b · V [t]− U [t])) (2.7)

The coefficients of the terms were obtained from the specific Izhikevich model shown
prior in Fig. 1.2. Together with matching values for the parameters a to d (Tab. 2.1)
specific behaviors of the neuron model can be triggered to elicit firing regimes similar
to that of cortical neurons [23]. In Eq. (2.7) the parameters a and b represent the
adaptation time-scale and sensitivity respectively.

If the membrane potential reaches the threshold Vthresh = 30mV (for all firing
regimes), then V [t + 1] and U [t + 1] are reset as shown in Eq. (2.8) and Eq. (2.9)
respectively.

V [t] = c if V [t] ≥ Vtresh (2.8)

U [t] = U [t] + d if V [t] ≥ Vtresh (2.9)

Parameters c and d thus represent the after-spike reset value for the membrane
potential and the increase in after-spike adaptation respectively.

For the purposes of this project, we used the four firing regimes RS (regular spik-
ing), FS (fast spiking), IB (intrinsically bursting) and CH (chattering). These four

Chapter 2 19

S. Ricklin Neuron Model Complexity

parameter
regime a b c d

RS 0.02 0.2 -65 8
FS 0.10 0.2 -65 2
IB 0.02 0.2 -55 4
CH 0.02 0.2 -50 2

Table 2.1: Parameter values for the four implemented Izhikevich firing regimes, with
a being the time-scale of U in ms, b the sensitivity of U , c the reset potential of V
in mV and d the after-spike increase of U .

seemed sufficiently different in terms of spiking behaviour to compare their possible
influences on training SNNs. Applying the parameter values given in Izhikevich [23]
to Eq. (2.6) until Eq. (2.9), the implemented Izhikevich model was able to repro-
duce the chosen firing regimes as shown in Fig. 1.2. The parameter values are also
reported in Tab. 2.1. From the table it is clear that all regimes use the adaptation
variable U because neither the parameters a, b nor d are zero. Here, we want to high-
light that this means that all regimes have voltage- and spike-dependent adaptation,
even the RS regime which was later compared to the non-adapting LIF model.

2.4.3 AdEx

Similar to the Izhikevich model, the AdEx has two update equation due to two
dynamic variables [9][34]. These are the membrane potential V and the adaptation
variable W .

The voltage update of the next time step V [t+1] is described by Eq. (2.10) and the
adaptation update W [t+ 1] by Eq. (2.11).

V [t+ 1] = V [t] +
dt

τmem

(
Vrest − V [t] + ∆T · e

V [t]−θrh
∆T −W [t] + Isyn[t]

)
(2.10)

W [t+ 1] = W [t] +
dt

τadap
(a (V [t]− Vrest)−W [t]) (2.11)

Here ∆T = 2.0 defines the sharpness of the exponential decay for the exponential
term. Respectively, τmem and τadap are the time constants of the membrane potential
and the adaptation variable. The rheobase threshold at which the AdEx starts the
exponential process of initiating the spike is given by θrh = −50 mV for all AdEx
regimes. Also, the potential at resting state Vrest = −70 mV for all AdEx regimes.
Parameter values that differed per firing regime are reported in Tab. 2.2 and were
taken from table 6.1 of Gerstner et al. [18].

The implemented reset at spike time for the membrane potential V [t] is given in
Eq. (2.12) and the reset for the adaptation variable U [t] is given in Eq. (2.13).

V [t] = Vreset if V [t] ≥ Vtresh (2.12)

W [t] = W [t] + b if V [t] ≥ Vtresh (2.13)

The values of the after-spike reset Vreset and adaptation increment b depend on the
firing regime.

Chapter 2 20

S. Ricklin Neuron Model Complexity

parameter
regime a b τmem τadap Vreset

TO 0.0 60 20.0 30 -55
AD 0.0 5 20.0 100 -55
BU -0.5 7 5.0 100 -46
IB 0.5 7 5.0 100 -51
IR -0.5 7 9.9 100 -46

Table 2.2: AdEx firing regime parameter settings, with a being the adaptation
voltage coupling in nS, b the spike triggered adaptation increment in pA, τmem the
membrane time constant in ms, τadap the adaptation time constant in ms and Vreset

the reset potential in mV . Source of the chosen parameter values is table 6.1 in
Gerstner et al. [18].

The AdEx experiments used the regimes TO (tonic), AD (adapting), BU (bursting),
IB (intrinsically bursting) and IR (irregular) (Tab. 2.2). Similar to the RS-Izhikevich
regime, the TO-AdEx regime has spike-triggered adaptation enabled which is not
given for the LIF model. This is an important remark because the LIF is compared
in the experiments especially to the RS-Izhikevich and TO-AdEx regimes.

From now on, for the sake of brevity, whenever the default LIF firing behavior, the
RS-Izhikevich regime and the TO-AdEX regime are addressed together, we will refer
to all of their firing behavior as regular spiking (even though their neural dynamics
differ).

2.5 Spiking Metrics

Sections 3.1.2 and 3.2.2 explore the quantitative metrics of neuronal firing behaviors
inside the implemented SNNs. Further motivation behind choosing the metrics, that
are explained here in this section, can be found in section 3.1.2. Here, we want to
give an overview over the used metrics and how they were computed.

Metrics of importance were the average spike count, firing rate, inter-spike interval
(ISI) and coefficient of variation of ISIs (CV ISI) for each neuron in the hidden
layer.

The mean spike counts were computed from a spike matrix that was filled during sim-
ulation time (within a single epoch). More specifically, as shown in Eq. (2.14),

µS =
1

B

B∑ T∑
S =

|S|
B

(2.14)

the mean spike count µS of the spike matrix S was obtained by first taking the sum
over the simulation time window T , followed by taking the mean over all samples in
a batch of batch size B. The number of spikes are defined as |S|.

For the remaining three metrics, in terms of code, that same spike matrix was used to
create SpikeList objects (list of SpikeTrain objects) for each HL neuron using parts
from the Functional Neural Architecture (FNA) [12] repository. Among many more
methods, the spike lists featured methods to compute the relevant metrics.

Chapter 2 21

S. Ricklin Neuron Model Complexity

The firing rate of a neuron n is defined as the number of spikes |Sn| within time
window T divided by T , as shown in Eq. (2.15) [18].

rn =
|Sn|
T

(2.15)

Inter-spike intervals are defined as exactly that, the time that passed between one
spike and the next [37]. For each batch sample, the spike lists needed to be merged
into a single spike list. During the merging process, the time windows of the spike
lists were sliced to be between the spike time of the spike train with the earliest spike
and the spike train with the latest spike. This procedure was intended to reduce
larger ISIs caused by spike-intervals between the last spike of one sample and the
first spike of the next sample.

The CV ISI is a measure of how regular or irregular spikes in a spike train are elicited
[18][44]. It is defined as the ratio of the standard deviation σs and the mean µs of
the ISIs s of a spike train (Eq. (2.16)) [18].

CV =
σisi

µisi

(2.16)

A CVs > 1 would describe more irregular firing than a spike train whose spikes were
generated by a Poisson process using the same firing rate [18].

2.6 Input Spiking Activity and Datasets

This section focuses on the type of inputs that SNNs require. Here, the problem
that the input format of one of the datasets poses is addressed. As mentioned at the
start of this chapter, the datasets itself are described in more detail in sections 3.1
(MNIST) and section 3.2 (SHD).

HL neurons of the SNNs, as implemented here, take weighted spike trains as input
signals. Therefore, the representation of the input data (samples) in the network’s
input layer must be in the form of spike trains for each neuron. For the SHD
data, for which the samples consist of spike trains, nothing needs to be adapted.
However, the MNIST data samples are gray-scale image arrays. That means that
each samples is a two-dimensional array with gray-scale values from 0 to 255 for
each pixel. Since this is the wrong input representation for the SNNs, the MNIST
data must be transformed into spike trains for each input neuron. The relation here
is pixel to neuron and gray-scale to spike train. The following subsection describes
the encoding scheme that was used to achieve this transformation.

2.6.1 Input Encoding of MNIST data

The MNIST data was encoded using a spike-latency encoding scheme (or ISI encod-
ing [3]) [8][7]. This was achieved by first normalizing the gray-scale values to be in
the range [0, 1] in which the LIF’s membrane potential fluctuates. Next, the time it
would take for a current-based LIF neuron to spike was computed if the normalized
gray-scale values were to represent current values and reach a certain threshold value
(0.2 in this case). The time-to-first-spike values were then used to create a spike

Chapter 2 22

S. Ricklin Neuron Model Complexity

train for each neuron. These spike trains contained only a single spike per neuron
if the threshold was reached and no spikes otherwise. This procedure was adapted
from SpyTorch [60] and is used in Zenke et al. [61].

Chapter 2 23

Chapter 3

Experiments

24

S. Ricklin Neuron Model Complexity

As stated in Sec. 1.1, the main research goal of this thesis was to test whether
the AdEx and Izhikevich neuron models achieve similar classification performances
as compared to the LIF model. On the one hand, we hypothesized that, thanks
to their higher complexity, the AdEx and Izhikevich models may generate more
complex input-output mappings, hence solving the problems of predicting the classes
more effectively. On the other hand, this complexity may impair the training of
the parameters. To test this hypothesis, we studied the different neuron models’
performances in terms of classification accuracy and neuron firing regimes quantified
by usual statistics (Sec. 2.5).

During this research project, we trained the models on three different datasets and
compared their results. However, only two of those are discussed in the main part
of this report. The results of training the models on the well-known MNIST dataset
(Sec. 3.1) and the biologically more relevant Spoken Heidelberg Digits (SHD) [11]
(Sec. 3.2) dataset are reported here. The results of networks trained on the third
dataset, generated data of smooth Random Manifolds [61], were moved to Appendix
Sec. A.2 because the dataset as configured turned out to be too difficult to success-
fully train the models which did not generate any further meaningful insights.

For each dataset, we ran three computational experiments. The first experiment per
dataset aimed at confirming the general ability that Izhikevich and AdEx SNNs can
be trained using SGL. In particular, the training involved several hyperparameters
that are known to affect the resulting classification performance, so these experi-
ments studied their influence (as well as compare suitable parameter ranges across
neuron models). To do this, we relied on Optuna which is a black-box optimizer
suitable to identify hyperparameter configurations, in a more efficient manner than
a simple grid search [1]. These experiments are reported in Sec. 3.1.1 and Sec. 3.2.1.
For the subsequent experiments on a given dataset, the best set of hyperparameters
was then used.

The second experiment (Sec. 3.1.2 and 3.2.2) investigated the change of the neurons’
firing behaviors from before and after the training of the network and how train-
ing influenced the network as a whole. As explained before in Sec. 2.4, both the
AdEx and the Izhikevich model are configurable to reproduce specific firing regimes
[23][34]. We want to highlight that in the first and second experiment the AdEx
and the Izhikevich model were limited to the regular firing regime only. To explore
the other regimes in that detail was left for future work and was beyond the scope
of the present project.

However, the influence of the firing regimes on the resulting classification perfor-
mance was an important question that is addressed in the third and final experiment
(Sec. 3.1.3 and 3.2.3). There, we compared the influence of the (initial) firing regime
on the training results, taking into account the hidden layer of our SNN. Note that
this experiment has been conducted with the same hyperparameter configuration as
the regular firing regime, i.e. without dedicated hyperparameter search. Again, the
reason for that was the limited scope of the project.

The results of these experiments are first reported and discussed for the MNIST
dataset (Sec. 3.1), followed by the results of the SHD experiments (Sec. 3.2). Sec. 3.1
contains detailed explanations of the experimental setups which also hold for the
same types of computational experiments that are reported in Sec. 3.2.

Chapter 3 25

S. Ricklin Neuron Model Complexity

Figure 3.1: Three randomly selected samples of original MNIST inputs as images
(top) and their respective latency encoded inputs shown as raster plots (bottom).

As explained before (Sec. 2.1.1), the experiments were limited to feedforward net-
works with a single hidden layer, without recurrent connections.

3.1 MNIST

The MNIST dataset is a collection of images of handwritten digits from zero to nine
[31]. Since then, the MNIST dataset has grown to be a common benchmark dataset
for image processing systems. MNIST was also used by Zenke et al. [61] in their
studies on the robustness of LIF SNNs which makes MNIST a relevant dataset for
this research project as well.

The dataset consists of 60k train samples and 10k test samples and ten classes,
each class representing one of the ten digits. Each digit is a 28x28 black-and-white
image.

In order to make the dataset usable for SNNs, the dataset was adapted into a
spiking version of itself by applying a latency spike encoding scheme on it which has
previously been described in Sec. 2.6.1. Fig. 3.1 shows three examples of both the
original inputs and their respective encoded inputs. As you can see, the simulation
time was 200 ms but the images were encoding using less time. The simulation of
200 ms gave the neuron models enough time to process the given stimuli. However,
that caused longer periods of no stimuli for the network and thus more silent neurons
towards the end of the simulation time. The resulting larger ISIs of the neurons were
mitigated due to the previously mentioned slicing of spike trains (spike trains of same
neurons in a batch were merged).

3.1.1 Hyperparameter Tuning

Hyperparameters for training the SNNs consisted of parameters for the SNN ar-
chitecture (number of units in hidden layer), the training procedure (learning rate,

Chapter 3 26

S. Ricklin Neuron Model Complexity

parameter
learning weight SG batch hidden layer L2
rate scale scale size size penalty

range [10−4, 10−1] [100, 103]* [101, 103] [128, 512] [128, 1024] [10−6, 10−3]

Table 3.1: Optuna hyperparameter ranges for the optimization studies. For each
data set and each neuron model type the same ranges were used. One exception
applies here: the initial weight scale of the AdEx is explored in a range of [100, 105].

L2 regularization, initial weight scaling) as well as data organization during the
training (batch size). Hyperparameters are known to have a strong influence on the
training outcome. Therefore, we aimed in this experiment to get a global view on
suitable ranges for each hyperparameter for which the trained connection weights in
the SNNs converge in a fast manner toward a ”good” minimum in the loss landscape
(even though it may be a local minimum). Furthermore, the hyperparameter opti-
mization studies provided a general insight about how easy it is to train a neuron
model in terms of the broadness of the acceptable hyperparameter range. Each pair
of dataset and neuron model were likely to have a different set of suitable hyper-
parameters. Consequently, we ran three hyperparameter searches here and another
three for the SHD dataset in Sec. 3.2.1.

Experimental Setup

The Optuna optimization objective was configured to maximize the test accuracy
of a model. Maximizing the classification accuracy of the SNNs seemed reasonably
and straight forward at that time.

Every study contained 200 trials and every trial was trained for at most 200 epochs.
To reduce computation time, we enabled the pruning feature offered by Optuna to
prune unpromising trials early on. Optuna used the Hyperband algorithm [32] by
which the Optuna decides after every epoch whether pruning should occur. Pruned
trials are caused by hyperparameter configurations that were found to be unsuccess-
ful (too slow loss improvement with respect to the number of remaining epochs).
Through the Hyperband algorithm which internally uses the SuccessiveHalving al-
gorithm [24] exponentially more trials use more promising hyperparameter config-
urations [32]. Additionally, independent of the Optuna pruning, we implemented
an early stopping (ES) procedure to prune trials that did not improve their classi-
fication error anymore after 10 epochs. The difference between Optuna’s pruning
and our ES procedure lies in the fact that pruning mainly occurred within the first
few epochs of hyperparameter optimization and the need to stop networks whose
training loss did not further decrease. Furthermore, the Optuna pruning focused
on training the hyperparameter configuration efficiently with respect to the test ac-
curacy whereas ES focused on training the SNN with respect to the train loss and
stop not improving networks.

For all optimization studies the same value ranges applied for the hyperparameters
mentioned above and are shown in Tab. 3.1. One exception is that the explored
initial weight scale range of the AdEx is larger with [1, 105] than the default range.

Chapter 3 27

S. Ricklin Neuron Model Complexity

Optuna Results

The results are presented in the same manner for all datasets and neuron models.
For a general explanation of the scatter plots take Fig. 3.2 as an example. The figure
contains six scatter plots, one for each hyperparameter optimized by Optuna. Each
scatter plot displays the relevant hyperparameter on the x-axis against a trained
SNNs’ classification accuracy on the y-axis. Each data point represents either the
train or test accuracy of a SNN model (blue and orange, respectively). For compar-
ison, the red dotted line indicates where a network model would perform at chance
level.

Before describing the hyperparameter optimization results, we would like to em-
phasize two points. First, sub-optimal hyperparameter configurations may come
from one or several hyperparameters, which includes non-trivial interactions be-
tween them. Conversely, a hyperparameter value that systematically yields low
accuracy indicates a dominating effect of that hyperparameter independently from
the others. Second and more importantly, many data points with low accuracies cor-
respond to pruned trials by Optuna for which the performance has not yet converged
to its maximum (but heuristically deemed as not sufficiently good for a number of
training epochs by Optuna); in other words, this means that the reported accuracy
may be lower than for the same number of training epochs for the SNN.

In the following, we focus on a more in-depth example of reporting the results for
the LIF and the MNIST data and the summary of the tendencies across neuron
models for the MNIST dataset. In-depth reporting of Izhikevich and AdEx results
is available in appendix A.1.1.

Optuna results of LIF hyperparameter optimization. In general, the Op-
tuna study with LIF-SNNs trained on the MNIST dataset (Fig. 3.2) resulted in
peak accuracies of acctrain ≈ 99.99% and acctest ≈ 98.20% for the train and test
set respectively. The mean absolute difference between the train and test accura-
cies was around 1.63% for all trials for which the test accuracy was ≥ 20%. For
the hyperparameters we made the following observations: (1) for the full search
space of the number of hidden units most trials reach top accuracies. There is no
obvious best hidden layer size for the LIF model. Some trials show worse accura-
cies but those are most likely caused by other hyperparameters that were set to a
sub-optimal value. (2) The same observation can be made about the plot display-
ing the batch size search space. For all batch sizes the majority of SNNs reached
top accuracies. Optuna seems to have focused more on batch sizes smaller than
3 · 102 because there were more trials for those values. However, for higher values
we did not observe an obvious drop in network performances. (3) The learning rate
plot shows that that the SNN models were not able to reach the top accuracies for
higher learning rates which in fact decreased for learning rates ≥ 10−2. (4) The L2
regularization penalty plot displays similar results to sub-plots (1) and (2) with no
discernible values that caused the SNNs to only reach sub-optimal accuracies. (5)
In the weight scale sub-plot we can see that the top-accuracy were only reached if
2 ≤ Ws ≤ 15. While the plot only shows one data point at a weight scale of 1 there
are on fact 18 trials that used that value and ended up with accuracies at chance
level. You can also see that by comparing the number of data points at chance level
in the other sub plots with the number of data points with those accuracy levels

Chapter 3 28

S. Ricklin Neuron Model Complexity

Figure 3.2: Results of the Optuna hyperparameter optimization study in which
LIF-SNNs are trained and tested on the MNIST dataset. Each sub-figure shows
a hyperparameter plotted against the accuracies of SNNs after training. From left
to right, top to bottom the hyperparameters are: number of hidden units, batch
size, learning rate, L2 penalty, weight scale and the scale of the surrogate gradient.
The blue and orange dots represent the model accuracies for the training and test
sets, respectively. The red horizontal dotted line indicates the chance level with
an accuracy of 0.1 (for 10 classes). Peak accuracies reached acctrain ≈ 99.99% and
acctest ≈ 98.20% for the train and test sets, respectively.

Chapter 3 29

S. Ricklin Neuron Model Complexity

shown in the weight scale subplot. This indicates that several trials are placed on
the same weight scale - accuracy coordinates. (6) for the sixth and last hyperpa-
rameter, the SG scale, its plot does not show a clear range of values for which the
models’ accuracies decreased but Optuna showed a preference to select lower valued
scales instead of larger ones. The remaining two hyperparameters, i.e. the learning
rate and the weight scale display less stable results for their ranges than the other
hyperparameters. For the learning rate, accuracies tended to decrease if the learning
rate became larger than 10−2. Similarly if weight scales were set to be equal to or
larger than 15 the networks’ classification accuracy decreased as well. On closer
inspection of the data, it became apparent that if the weight scale was 1, that then
the network performed at chance level whereas weight scales of 2 ≤ W ≤ 15 led
to top accuracies. In summary, LIF-SNNs were robust to the search space of the
chosen hyperparameters. In Fig. 3.2 we saw that for the explored range of hidden
layer, batch size, L2 penalty and the SG scale the networks reached training and
test accuracies close to 98.2%. The learning rate and weight scale did show to have
an impact on network performances if their values are too large.

Summary for all neuron models. The results above and in similar detail in
appendix A.1.1 showed that with the right set of hyperparameters comparatively
high classification accuracies can be achieved. For all three neuron models accuracies
> 90% were reached. The highest test accuracies were reported by the LIF SNNs
(98.20%) which are on a similar level as reported by Zenke et al. [61]. SNNs that
used the Izhikevich model landed the second highest test accuracies with 96.68%
(Fig. A.1) while networks that used the AdEx model reached the third highest test
accuracies with 94.13% (Fig. A.2). The results also show that the LIF in general
was more robust to larger ranges of various hyperparameters but all three of the
neuron models were sensitive to smaller or larger values for the learning rate and
the initial weight scale. Specifically, the Izhikevich and AdEx networks depended
on narrower value ranges for the initial weight scale. More precisely, too low initial
weight scales led to many ”bad” trials. In those cases, Optuna lost many trials that
it could have used to focus on other hyperparameters’ search space.

From the results we see that the MNIST dataset was relatively easy to learn. The
classification accuracies are close to being perfect.

Final hyperparameter values Based on the top ten to top five trials for each
Optuna study, we looked at the average and median values for six hyperparameters
and chose reasonable values for them. For the sake of comparability, it was feasible
to select the same HL and batch sizes per neuron model. The L2 penalty was set
to its minimum search space value because of its apparent insignificant influence on
SNN training. The learning rate, weight scale as well as the SG scale can be seen
as being specific to each neuron model for each data set. Considering these factors,
we selected the individually suitable values for those hyperparameters as shown in
Tab. 3.2. These values were used in both subsequent experiments.

3.1.2 Firing Regime Drift

The previous experiment showed that the Izhikevich and AdEx neuron models can be
trained similarly well as the LIF neuron model on the MNIST data (Sec. 3.1.1).

Chapter 3 30

S. Ricklin Neuron Model Complexity

Dataset Model
Hyperparameter

learning weight SG batch HL L2
rate scale scale size size penalty

MNIST
LIF 0.0003 3 25

256 800 10−6Izh. 0.003 50 30
AdEx 0.055 850 65

Table 3.2: Chosen hyperparameter for MNIST and neuron model pairs. The abbre-
viations scale of SG and HL size refer to the scale of the surrogate gradient during
the backpropagation step and the size of or number of neurons in the hidden layer
respectively. The weight scale refers to the scaling of the network weights and ap-
plies to all weight matrices.

SGL allows for learning in other neuron models than the LIF and they can reach
high accuracies (especially test accuracy). Beyond the classification accuracy, a
more biological question is whether the spiking regime changes during training for
the Izhikevich’s and AdEx’s models. This is important with respect to biological
plausibility. To test this, we studied the statistics of the neuron population in the
hidden layer of neurons in the regular spiking regime.

The change of synaptic weight during SNN learning may change the firing regime
as we are also dealing with inputs that are encoded to work with the LIF model
and do not necessarily match how one would encode inputs for the Izhikevich or
AdEx. This experiment was designed to investigate whether the neurons in their
respective regular spiking regimes do in fact stay in that firing regime. Therefore,
studying the spiking behavior of the neurons that build up the SNNs is all the more
important.

Experimental Setup

This computational experiment focused on several metrics that reflect the effects of
learning on the hidden layer. The hidden layer is key to form representations of the
inputs that are the used by the output layer to make the classification decision.

First, the quality of learning can be quantified by how much the train and test loss
converged in a number of training epochs (50), as well as the presence of strong
fluctuations in its curvature. Second, we looked into the changes in the two weight
distributions, those connecting the input layer to the hidden layer (WIn→HL) and
those connecting the hidden layer to the output layer (WHL→Out). Third and lastly,
the possible alteration of the firing regime by the training was evaluated by com-
paring the firing rate and spike count of the response of hidden unit neurons to each
stimulus, as well as the inter-spike-interval (ISI) and coefficient of variation of ISI
(CV-ISI) distributions for validating that the neurons stay in their respective regular
firing regime. These spiking metrics were already explained before in Sec. 2.5.

For each neuron model one network was trained to collect the relevant results. Three
trials in total of networks that reach high classification accuracy was enough to gain
the necessary insights in how the neuron types behave after training. Each pair has
been trained using the hyperparameters reported in Tab. 3.2. All neuron models
within this experiment were set to behave in their default regular firing regime.

Chapter 3 31

S. Ricklin Neuron Model Complexity

Results

Fig. 3.2 shows an example of the results explained below. The top row depicts the
train and test losses over the training epochs on the left hand side and the network’s
weights before and after learning in the middle and on the right hand side. The left
weight plot displays the weights of the weight matrix WIn→HL between the input
layer and the hidden layer whereas the right weight plot displays weight matrix
WHL→Out which contains the connection strengths from the hidden layer to the
output layer. The plots in the bottom row display the spike metrics described
earlier from before and after training. From left to right these are the mean firing
rates, mean spike counts, ISIs and CV-ISIs per neuron.

The three networks trained on the MNIST dataset reached high accuracy values
as was expected from the hyperparameter search results. The LIF had the highest
values for the train and test set of 100% and 98.23% respectively, whereas the
Izhikevich and AdEx reached values of 96.75% and 95.61%, and of 91.93% and
91.56% respectively.

In the following, we report the results of the individual networks with the same
approach as in the previous Sec. 3.1.1. Similar to the previous experiment, the
reporting of results for the LIF network is more detailed whereas the rest of the
results will be summarized for the sake of brevity.

LIF The train and test losses in Fig. 3.3 show that the training of the LIF-
network’s weights converged after around 20 epochs. The test losses were higher
than the train losses but they kept following the train losses with approximately the
same difference. Around epoch 29 there was a sudden increase in both losses after
which the network quickly returned to previous loss levels. This might have oc-
curred due to the surrogate gradient not being precise which may cause an unstable
loss curve. There was a shift in the weights during network training from (close to)
zero-valued weights to larger values. While both weight matrices show this trend
the distribution of WHL→Out changed more and has thicker tails. After training, the
hidden layer neurons had reduced mean firing rates while also the amount of neu-
rons with close to zero firing rates was reduced. Notably, there were no more single
neurons with average firing rates larger than 20 Hz after training. The mean spike
count plot also shows that there were a lot more non-silent neurons after training
than before training. This can also be related to the increased amount of non-zero
weights in WIn→HL. More non-zero weights mean a higher chance for neurons to
elicit spikes due to positively amplified inputs. The reported ISIs were larger after
training with most intervals being close to 200 ms, very few close to 0 ms and a few
spike trains reported larger than 600 ms intervals. Please note however, that for the
ISI and CV ISI plots the amount of actual data points underlying the distributions
was different for the pre and post training conditions. This was because the amount
of spikes differed before and after training; and generally, a spike train can only
compute an ISI if it contains at least two spikes. For this reason, the description
of Fig. 3.3 reports number of samples without spikes, prior and post training. Last
but not least, the mean of the CV ISI distribution increased from approximately
0.75 prior training to 1.1 post training. Both distributions before and after training
indicate a rather regular firing behavior because their averages are close to 1. Still,
the LIF neurons fired more irregular after training than before.

Chapter 3 32

S. Ricklin Neuron Model Complexity

Figure 3.3: Network and neuronal statistics of an LIF network trained on MNIST
data. The trial reached a train and test accuracy of 100% and 98.23% respectively.
The top left panel indicates the loss values during the optimization. The same color
coding is used for all panels with blue and orange for the train and test sets, respec-
tively. The top middle panel indicates the weight distribution for the connections
from the inputs to the hidden layer, and the top right panel for connections from
the hidden layer to the outputs. The bottom left and middle left panels respectively
show the spiking rates and spike counts of the neurons during the response to stimuli
(averaged over a batch of 256 stimuli and across 800 neurons). The bottom middle
right panel indicate the distributions of inter-spike intervals (ISIs); not that silent
neurons are excluded here. The bottom right panel indicates the corresponding co-
efficient of variation (CV) of the ISIs for neurons that fire more than 3 spikes during
the response, as an indication for the firing regime. Samples without spikes before
training: ≈ 64%. After training: 0%.

Chapter 3 33

S. Ricklin Neuron Model Complexity

Figure 3.4: Network and neuronal statistics of an Izhikevich network trained on
MNIST data. The trial reached a train and test accuracy of 96.75% and 95.61%
respectively. Samples without spikes before training: ≈ 83%. After training: 0%.
For a detailed description of all figure panels, see Fig. 3.3.

Izhikevich The results from the Izhikevich network in Fig. 3.4 indicate that the
network did not completely converge because the train loss was still slightly de-
creasing after 50 epochs. However, the test loss did not decrease any further. The
changes in weights do seem to be larger for the LIF than for the Izhikevich and AdEx
network. Especially the AdEx weight distributions changed less in relation to the
weight size while still reaching a test accuracy of 91.56%. The Izhikevich network
started with more zero-spike samples (83%) than the LIF (64%) but managed to
reduce that amount to 0%. The mean firing rates did slightly increase for a few
neurons and was comparatively higher with a maximum of around 80 Hz compared
to maximally 20 Hz of the LIF. Because the number of samples without spikes was
greatly reduced and more sparse spiking neurons remained after training, there were
more neurons with high ISIs. The irregularity of spiking did not change much after
training. With average CVs smaller than 1.0, the firing behavior was rather regular
and if at all, one could say that there was a minor shift in the CV ISI post training
distribution towards more regular spiking.

AdEx The results for the AdEx in Fig. 3.5 indicate that the network converged.
Here the test loss was remarkably close to the train loss during training. The
train and test accuracy values were 91.93% and 91.56% respectively. The weight
distributions changed less than to the LIF weight changes. While the AdEx started
with many high firing rate neurons, training showed to have an effect on reducing
the mean firing rates significantly. Still, many sparse spiking neurons remained with
only a few neurons that had more spikes on average. The ISI and CV ISI before
training have a very flat distribution because of too few samples that caused spikes.
However, the network learned from those few samples to reach high accuracies with

Chapter 3 34

S. Ricklin Neuron Model Complexity

Figure 3.5: Network and neuronal statistics of an AdEx network trained on MNIST
data. The trial reached a train and test accuracy of 91.93% and 91.56% respectively.
Samples without spikes before training: ≈ 93%. After training: 0%. For a detailed
description of all figure panels, see Fig. 3.3.

a sparse spiking network. Most neurons showed regular firing behavior, with very
few displaying irregular and other very regular, deterministic firing behaviors.

The test loss for both Izhikevich and AdEx was remarkably closer to the train loss
compared to the difference in losses for the LIF network (Fig. 3.3). The Izhikevich
and AdEx networks did seem to reach high classification accuracies without large
weight changes compared to the LIF. While the LIF had overall the lowest mean
firing rates, its neurons showed more irregular firing behavior and higher counts of
mean spikes per neuron. The Izhikevich and AdEx neuron models were capable of
reaching similarly high classification accuracies as the LIF while displaying sparser
and more regular spiking activity.

3.1.3 Firing Regime Comparisons

From the closer inspection of network and neuronal statistics (Sec. 3.1.2), we moved
on to train SNNs that use other firing regimes than we have previously used. The
aim of this experiment was to show that the range of firing regimes the Izhikevich
and AdEx dynamics provide can in fact be leveraged by using SGL. Another goal
was to find advantages and disadvantages other firing regimes offer compared to the
RS-Izhikevich and TO-AdEx regimes. For completeness and a better comparison,
we still included the regular firing regimes that we have seen before here as well.
Thus, the studied set of Izhikevich firing regimes included next to the regular spiking
(RS) the fast spiking (FS), intrinsically bursting (IB) and chattering (CH) regimes.
Additional firing regimes of the AdEx were, next to tonic firing (TO): adaptive
(AD), bursting (BU), intrinsically bursting (IB) and irregular firing (IR).

Chapter 3 35

S. Ricklin Neuron Model Complexity

Figure 3.6: Test accuracies of various firing regimes, trained on the MNIST data set.
Each regime was trained 10 times. Note that data points below 0.6 test accuracies
were cut off here to increase visibility of the narrow violin plots.

Experimental Setup

Again, the hyperparameter values reported in Tab. 3.2 were used for the respective
neuron models. These were obtained from optimization studies on SNNs in the reg-
ular spiking regime. Here, we want to remind the reader that these hyperparameter
values were used for the other firing regimes as well which means that the non-regular
firing regimes were potentially not trained in their actual optimal hyperparameter
spaces. From above selection of firing regimes, there were consequently 10 unique
SNN configurations: one for the LIF model, four for the Izhikevich regimes and five
for the AdEx regimes. The performance of those networks is reported in terms of
test classification accuracy. Each SNN configuration was trained ten times which
allowed for enough possible variation in the training accuracies.

Results

Fig. 3.6 shows the results in form of swarm plots (black dots) that are plotted on
top of violin plots. Please note that some networks returned very similar accuracy
values which is why the swarm plots that are plotted on top the violin plots do not
always show all ten trained networks per regime. The results in that figure confirm
the high train and test accuracies of the regular firing regimes for all three models
which we have previously seen in Sec. 3.1.1 and Sec. 3.1.2. Explicit values of the
mean and standard deviation of each firing regime network are reported in Tab. 3.3.
The non-regular Izhikevich regimes FS, IB and CH failed in all their attempts to
train their respective network’s connection weights. However, accuracies below 60%
were cut off to increase the visibility of the violin plots of the successfully trained
networks. Therefore, the results of the FS, IB and CH Izhikevich networks are not
visible in Fig. 3.6. All non-regular AdEx regimes however did result in accuracies of
the train and test set that were on a similar level as the regular (TO) firing regime.

Chapter 3 36

S. Ricklin Neuron Model Complexity

LIF Izhikevich AdEx

regime - RS FS IB CH TO AD BU IB IR

median 98.2 95.7 9.8 9.8 9.8 91.3 91.6 90.7 89.6 91.3

mean 98.1 95.7 9.8 9.8 9.8 91.1 91.6 90.7 89.5 91.4

std 0.2 0.2 0.0 0.0 0.0 0.6 0.5 0.6 0.6 0.5

Table 3.3: Percentage-wise mean, median and standard deviation of the test accu-
racies of ten trained SNNs for each firing regime. The SNNs were trained on the
MNIST dataset. The regimes with the highest test accuracy per neuron model are
highlighted in bold.

Figure 3.7: Test accuracies of various firing regimes, trained on the MNIST data
set. Each regime was trained 10 times.

In fact, the regimes AD and IR returned on average slightly higher test accuracies
than the TO regime. Generally, the highest test (and train) accuracy values were
reached by the LIF model (≈ 98.1%), while the Izhikevich RS regime reached the
second highest (≈ 95.7%) and the AdEx in the AD the third highest set of test
accuracy values (≈ 91.6%). Notably, the standard deviation of the classification for
both train and test set is very small for all firing regimes.

3.2 Spoken Heidelberg Digits

For the second series of simulations, we trained the SNN models on the Spoken
Heidelberg Digits (SHD) dataset [11]. The dataset was created as a ready-made
benchmark dataset for training SNNs which is in contrast to the MNIST dataset
that first needs to be transformed into SNN-suitable input encodings [11].

As the name suggests, the data are audio recordings of spoken digits. Cramer et al.
[11] created the dataset from converting audio data to spike data from recordings
of twelve speakers saying the digits zero to nine. The ten digits were spoken in the
English and German language which resulted in twenty classes. The train and test
sets contain recordings of ten and two distinct speakers respectively.

Chapter 3 37

S. Ricklin Neuron Model Complexity

classes
input samples samples
units train test

original 20 700 8156 2264

English only 10 700 4011 1079

Table 3.4: Specifications of the SHD dataset [11], including the number of classes,
input units (channels) and samples. The experiments discussed of this project only
used the 10 English classes out of the available 20 English and German classes.

Figure 3.8: Six randomly selected samples of original SHD input stimuli. The input
to the SNNs was extended to 100ms because of the varying length of the samples
and to give the neuron in the network time to propagate all information from input
to output layer.

The experiments reported here, only used the ten classes that represent the English
spoken digits. The reasoning behind this was comparability to the ten MNIST
classes. With ten classes in all used datasets the results were easier to compare with
one another. The details and size of the resulting dataset are shown in Tab. 3.4.

Cramer et al. [11] converted audio data to spike data by passing the audio data
through their artificial cochlea model called Lauscher. Lauscher approximates the
generation of spikes of the ”inner ear and the ascending auditory pathway” as ex-
plained by Cramer et al. [11].

Through the means of approximating neurological signals the SHD data is bio-
logically closer to incoming signals of neurons than the spiking MNIST data is.
Therefore, the SHD dataset seems to be biologically more relevant than the spiking
MNIST data when it comes to the comparison of the neuron models in this research
project.

Fig. 3.8 shows three samples of both the original inputs and their respective encoded
inputs. As can be seen in the figure, the SHD dataset can be considered more
biologically realistic than the MNIST dataset. In the following, we investigated
whether for the SHD data the same conclusions for the neuron models apply (in

Chapter 3 38

S. Ricklin Neuron Model Complexity

Dataset Model
Hyperparameter

learning weight SG batch HL L2
rate scale scale size size penalty

SHD
LIF 0.0002 1.5 20

180 800 10−6Izh. 0.001 4 20
AdEx 0.004 35 20

Table 3.5: Chosen hyperparameter for SHD and neuron model pairs. The term SG
scale refers to the scale of the surrogate gradient during the backpropagation step,
while HL size refers to the size of or number of neurons in the hidden layer. The
weight scale refers to the scaling of the network weights and applies to all weight
matrices.

terms of learning and of the resulting classification performance).

3.2.1 Hyperparameter Optimization Studies

A hyperparameter search is necessary for the SNN models trained on the SHD data
as well because of the same reasons given in Sec. 3.1.1. Again, we used Optuna to find
suitable sets of hyperparameters for each neuron model. The specific experimental
setup was the same as for the MNIST dataset (Sec. 3.1.1).

Optuna Results

In the following, we summarized the results of this experiment. A more in-depth
description along with figures of the results per neuron model is given in Appendix
A.1.2.

The hyperparameter optimization study was successful in finding hyperparameter
values that allowed every neuron model to train SNNs with relatively high accuracies.
Again, the best performing networks came from the LIF, followed by the Izhikevich
and lastly the AdEx model. The best LIF trials reached close to perfect train
accuracy values of around 99% but only reached peak test accuracy values of around
85% (Fig. A.3). The Izhikevich SNN models showed in fact average train accuracies
of 75% but higher test accuracies around 83% (Fig. A.4). A similar observation
comes from the AdEx networks for which peak accuracies were around 62% for the
train set and 65% for the test set (Fig. A.5). For the LIF, the difference between
the train and test set accuracy values is larger than for the other two models.

The results show that training the SNNs depends on the right set of hyperparame-
ters, more so for the AdEx and Izhikevich SNNs and less so for LIF SNNs. The LIF
is more robust to a wider range of hyperparameter values for all hyperparameters.
Choosing the right weight scale and learning rate is essential for all models but es-
pecially so for the AdEx model which showed a small range of viable values for both
hyperparameters. More hidden units and a smaller batch size were more relevant
for learning with the Izhikevich and AdEx networks compared to the LIF networks.
The same holds for lower L2 penalties and the SG scale for all three models.

Final hyperparameter values From those results the hyperparameter values
presented in Tab. 3.5 were chosen. Similar to the MNIST results, we selected the

Chapter 3 39

S. Ricklin Neuron Model Complexity

Figure 3.9: Network and neuronal statistics of a LIF network trained on SHD data.
The trial reached a train and test accuracy of 99.70% and 80.67% respectively.
Samples without spikes before and after training: 0%. For a detailed description of
all figure panels, see Fig. 3.3.

same HL and batch sizes for each neuron model. A low L2 penalty did lead to better
performing networks for each neuron model. The learning rate, weight scale as well
as the SG scale can be seen as being specific to each neuron model which is why
we selected suitable values for those hyperparameters. Based on top ten to top five
trials per neuron model, we chose reasonable values from comparing the average and
median values of the learning rate, weight scale and SG scale. These settings were
then used in the subsequent computational experiments.

3.2.2 Firing Regime Drift

Let us move on to inspect the network and spike metrics of the regular firing regime
networks that were trained on the SHD dataset. Here, the same reasoning and
explanations for the experiment applied that we have already given in Sec. 3.1.2 for
the MNIST dataset. Again, the same experimental setup applied that is described
in Sec. 3.1.2.

Results

In the following, we presented the results of the single trials for each neuron model.

LIF The trained LIF network reached a train and test accuracy of around 99.7%
and 80.67% respectively. Fig. 3.9 shows the network losses, its connection weights
as well as its spike metrics. While the network’s train loss did not improve much
more after 40 epochs, the test loss deviated from the train loss after a few epochs
and increased on average over the course of training. The test loss started to drop

Chapter 3 40

S. Ricklin Neuron Model Complexity

Figure 3.10: Network and neuronal statistics of an Izhikevich network trained on
SHD data. The trial reached a train and test accuracy of 79.14% and 77.22%
respectively. Samples without spikes before and after training: 0%. For a detailed
description of all figure panels, see Fig. 3.3.

slightly shortly before epoch 50. The divergence in the losses and the worsening test
loss indicate that the LIF model overfit on the train set. The weight distributions
of both weight matrices show a larger spread after training. Looking at the reduced
mean firing rates and spike counts after training, it is clear that the network showed
sparse spiking behavior with no neuron eliciting more than 6 spikes on average. The
ISIs did not change much except for a slight decrease for the maximum ISI from
around 3500ms to 2500ms. Furthermore, the CV ISI distribution after training
changed noticeably to higher CV ISI values on average. This indicates that the
neurons fired more irregularly, with a mean CV of around 1.75.

Izhikevich The trained Izhikevich network reached a train and test accuracy of
around 79.14% and 77.22% respectively. Fig. 3.10 shows the network losses, its
connection weights as well as its spike metrics. The network seems to have mostly
converged after 50 epochs of training. The test loss was very close to the train loss
every epoch. This is reflected in the close train and test accuracy values. The weight
distributions have not changed much after network training for the Izhikevich model
which already had rather broad weight distributions pre and post training when
compared to the LIF (and the AdEx). This is also visible in the spike metrics plot.
Here, the plot shows that the spiking activity increased after training but not by
much. After training, there were few neurons with a high firing rate and thus a higher
spike count whereas there were none before training. Compared with the other
neuron models, the Izhikevich model started in a sparse spiking regime and stayed
there. The network also had increased ISIs, with slightly increased irregularity in
the neurons’ firing behavior. However, the mean of the CV distribution was still
around regular levels of firing.

Chapter 3 41

S. Ricklin Neuron Model Complexity

Figure 3.11: Network and neuronal statistics of an AdEx network trained on SHD
data. The trial reached a train and test accuracy of 63.08% and 65% respectively.
Samples without spikes before training: ≈ 23%. After training: ≈ 0%. For a
detailed description of all figure panels, see Fig. 3.3.

AdEx The trained AdEx network reached a train and test accuracy of around
63.08% and 65.00% respectively. Fig. 3.11 shows the network losses, its connection
weights as well as its spike metrics. Looking at the loss which is somewhat unstable,
the network seems to have converged in the last twenty epochs. Similar to the
Izhikevich model, the AdEx test loss followed the train loss very closely. However,
the test loss was very unstable compared to its smoothness in the other models. The
weight distributions show a change after training without any noteworthy salience.
After training, the AdEx neurons increased their firing rates, mean spikes counts as
well as ISIs per neuron. The network thus deviated from a sparse spiking behavior.
Looking at the CV ISI, there were a few neurons that started spiking more regularly
than others but most neurons moved towards a CV ISI of 0.7. Overall, the mean
spiking regularity did not change much during training.

To summarize the main similarities and differences: the LIF and the Izhikevich
reached a similarly high test accuracy (80.67% and 77.22% respectively) with a stark
difference in train accuracy between one another. The AdEx model reached a good
but not as high test accuracy (65.0%). Moreover, the train losses of the Izhikevich
and AdEx models converged on higher values compared to the LIF model’s train
loss. However, the test losses and the test accuracies of both models were notably
closer to the train losses and accuracies than was the case for the LIF model. The
LIF and Izhikevich models operated or learned to operate within a sparse spiking
mode and tended to fire spikes more irregularly, whereas the AdEx model diverged
more from a sparse spiking mode and displayed more regular firing behaviors.

Chapter 3 42

S. Ricklin Neuron Model Complexity

Figure 3.12: Test accuracies of various firing regimes, trained on the SHD data set.
For each regime we trained the networks 10 times.

LIF Izhikevich AdEx

regime - RS FS IB CH TO AD BU IB IR

median 80.1 76.4 68.0 69.4 8.8 66.3 57.7 52.7 58.1 56.6

mean 80.1 75.9 67.1 57.7 8.8 66.3 58.3 54.7 56.2 58.2

std 1.6 3.5 4.4 25.5 0.0 2.7 5.9 7.3 7.3 4.3

Table 3.6: Percentage-wise mean, median and standard deviation of the test accu-
racies of ten trained SNNs for each firing regime. The SNNs were trained on the
SHD dataset. The regimes with the highest test accuracy per neuron model are
highlighted in bold.

3.2.3 Firing Regime Comparisons

Next, the final experiment explored the performance of the neuron models when
other firing regimes than the regular spiking regime were used. Here, the same
reasoning and explanations for the experiment applied that we have already given
in Sec. 3.1.3 for the MNIST dataset. The same experimental setup as described in
Sec. 3.1.3 applied here as well. We trained ten different networks: one, four and five
different networks for the LIF, Izhikevich and AdEx networks respectively. Each
network was trained ten times for 50 epochs.

Results

Fig. 3.12 shows the distribution of train and test accuracy values for each network.
Tab. 3.6 reports the median, mean and standard deviation of the mean of the test
accuracies of all tested regimes. While the LIF networks obtained the best accuracies
of all networks, Fig. 3.12 clearly shows that the LIF networks overfit on the train
set with train accuracies around 100% and obtained test accuracy values that were
on average 20% lower with a mean of 80.1%.

Chapter 3 43

S. Ricklin Neuron Model Complexity

Figure 3.13: Test accuracies of various firing regimes, trained on the SHD data set.
Each regime was trained 10 times.

The Izhikevich networks obtained comparatively high accuracies: peak train and
test accuracy values of the Izhikevich RS regime were even as high as the mean LIF
test accuracy. Out of the additional Izhikevich regimes, the FS and IB performed
well while the CH networks were not trainable at all. In two out of ten cases the
IB networks were not trainable also. Compared to the MNIST results (Sec. 3.1.3)
for which none of the additional firing regimes worked, this was a substantial im-
provement. If we look at the best mean test accuracy, the FS regime performed best
(67.1%) out of the additional Izhikevich regimes. However, if we look at the median
test accuracy which was less influenced by the two outliers, the IB networks did
perform better (69.4%) than the FS networks. Thus, if we disregard the IB outliers
the IB performed better than the FS regime.

Out of all AdEx regimes, the TO regime reached the highest average accuracy
(66.3%) while also displaying the smallest deviations from its mean accuracy. This
means that the AdEx TO on average did not perform better than the Izhikevich
regimes (apart from the CH regime). Other AdEx regimes performed on average
slightly worse than the TO regime. Non-TO AdEx regimes did however perform
on similar levels. IB and AD networks performed best out of Non-TO networks
if we look at the median (58.1%) and mean (58.3%) test accuracy values respec-
tively.

We close the results chapter by inspecting the differences in train and test accuracies
more closely. In Fig. 3.12 we have already seen that for all Izhikevich and AdEx
regimes the test accuracy values were on similarly high level as their respective train
accuracy values. The LIF networks however showed a stark difference between its
accuracies. Fig. 3.13 depicts these differences more clearly while Tab. 3.7 reports
the median, mean and standard deviation of accuracy differences for each regime.
This figure and table make the difference between the LIF on the one hand and the
Izhikevich and AdEx on the other hand more obvious: While the LIF overfit on
the train set, the Izhikevich and AdEx regimes generalized surprisingly well on the

Chapter 3 44

S. Ricklin Neuron Model Complexity

LIF Izhikevich AdEx

regime - RS FS IB CH TO AD BU IB IR

median 19.7 0.1 0.1 3.2 1.3 -0.7 2.8 6.9 2.5 1.5

mean 19.7 0.4 -0.3 1.7 1.3 0.3 2.2 6.7 3.1 2.5

std 1.6 2.7 3.1 3.3 0.0 2.3 2.6 3.1 4.7 3.0

Table 3.7: Percentage-wise median, mean and standard deviation of the mean dif-
ferences of the test accuracies for each firing regime. The SNNs were trained on the
SHD dataset. The regimes in bold represent the regimes with the smallest differ-
ences per neuron model.

unseen test set. In fact, for the RS and FS Izhikevich SNNs and the TO, AD, IB
and IR AdEx SNNs, some of their training runs reached even higher test accuracies
than their respective train accuracies.

Chapter 3 45

Chapter 4

Discussion

46

S. Ricklin Neuron Model Complexity

We start the discussion of the results with a brief summary on the important find-
ings.

First of all, for all neuron models the regular firing regime networks were trainable
for each dataset. However, the LIF neuron reached the highest average train and
test accuracy values for all datasets. The Izhikevich networks in RS regime were
able to reach on average better results than AdEx networks in the TO regime. Still,
all three neuron models reached accuracies above 90%.

Second, we found that for each datasets all three neuron models depended on a
suitable initial weight scale to for successful training of the networks (Sec. 3.1.1,
3.2.1). The Izhikevich and even more so the AdEx model showed to operate in more
narrow initial weight scale ranges than the LIF. In contrast, the LIF overall operates
well without strict hyperparameter tuning.

Third, the results showed that learning enforced a sparse spiking paradigm (Sec. 3.1.2,
3.2.2). Except for one case (AdEx trained on SHD), all models showed signs of op-
erating in a sparse spiking regime. Compared to the LIF model, the Izhikevich and
AdEx model both featured a small selection of neurons that displayed higher than
average spiking activities. These seemed to be very few but influential neurons. In-
terestingly, when comparing the network performances and the CV ISIs there seems
to be a correlation between high performing networks and sparser but more irregular
firing. It does seem that the training reduced the number of spikes in the Izhike-
vich hidden layer (similar to the LIF) which enforced sparse coding in the hidden
layer of the network. This has been studied before [41][57][50][43][58][19] and in a
way transforms the inputs into activity patterns that do not overlap, so they are
”orthogonal” and for a basis that makes the readout learning easy [49].

Fourth, while for the MNIST dataset the FS, IB and CH Izhikevich regimes were
not trainable (Sec. 3.1.3), only the CH Izhikevich regime was not trainable for the
SHD dataset (Sec. 3.2.3). The reason for this might actually be unsuitable sets of
hyperparameters for these ’failed’ regimes. The CH might require a precise hyper-
parameter tuning, but it might also be that it cannot be trained at all.

Fifth, compared to the MNIST accuracies, the SHD accuracies were lower for each
neuron model. This means that the SHD dataset was more difficult to train on.
This was likely caused by fewer samples in the (train) data set on the one hand
and perhaps by more complex patterns and temporal dependencies within the spike
trains on the other hand.

And finally, while it is not very apparent in the results of the MNIST regime com-
parisons (Sec. 3.1.3), the SHD results indicate that the LIF model is more prone to
overfit on the train set than the Izhikevich and AdEx models (Sec. 3.2.3). Espe-
cially for the latter dataset, the results of the Izhikevich and AdEx networks indicate
strong generalization capabilities towards new unseen data.

Additional experiments

During this research project, more computational experiments were conducted than
reported. The results of these experiments are excluded from the main body of this
thesis because they did not greatly inform the conclusions about the main research

Chapter 4 47

S. Ricklin Neuron Model Complexity

goal. However, they still returned results that could be of value for future research
and are thus summarized in the following:

In earlier simulations, the connection weights of WIN→HL were fixed (frozen) to in-
vestigate the capability of the readout layer to learn patterns from the Izhikevich
and AdEx compared to the LIF model. The results showed that the readout layer
alone was capable of delivering surprisingly good classification performances. Nat-
urally, the classification accuracy was lower than the accuracies reported in chapter
3. Interestingly, when all firing regimes were compared, there were more appar-
ent inter-dataset differences (MNIST-SHD) for Izhikevich regimes (as we have seen
before), whereas there were more intra-dataset differences for the AdEx regimes (be-
tween regimes, for each dataset). The latter observation indicates that the supposed
flexibility of diverse firing regimes involved in shaping input-output mappings for
the classification task could only be used when both input and output connectivities
(weights matrices) are trained. This holds for at least the AdEx regimes.

Additional experiments explored the performance of the Izhikevich and AdEx neuron
models on a third dataset. The results of those trials that were trained on RandMan
data are reported in Appendix Sec. A.2. They were not included in the main report
because the results did not further inform the goals of the research project. The
comparison of the various firing regimes (Sec. A.2.3) showed that the LIF SNNs
overfit and that the Izhikevich and AdEx SNNs failed to train and reach good
accuracies for both train and test set. A summary of these and other RandMan
results is still included in the appendix for completeness.

4.1 Conclusion

In this research project, we have shown that the Izhikevich and AdEx neuron models
can be used in addition to the LIF neuron model to train SNNs that use SGL.

On the one hand, the Izhikevich and AdEx networks did not perform better than
the LIF model in terms of test accuracy. In fact, they performed slightly worse
in that regard. On the other hand, the Izhikevich and AdEx performed better in
terms of generalization, especially if trained on the biologically more realistic SHD
dataset. This observation held for all firing regimes of both neuron models. A direct
comparison of how the generalization capabilities of both models behaves when the
classes of the SHD are increased from ten to twenty classes would be an interesting
next step.

The trained networks remained in a sparse spiking paradigm. It should therefore
be possible to reduce the hidden layer size and create more efficient networks. Pre-
vious research already used fewer neurons in the hidden layer of LIF SNNs while
reaching close-to-perfect accuracy [61]. Here, we chose larger hidden layers because
the hyperparameter search indicated the Izhikevich and AdEx SNNs would require
more neurons. Because of the latter’s shown sparseness of spikes, future work may
show that using fewer neurons works similarly well.

Furthermore, Optuna’s optimization objective was set to solely maximize the train
accuracy. Additionally, one could set Optuna or other hyperparameter optimization
techniques to optimize towards sparse spiking networks, similar to the adding of the

Chapter 4 48

S. Ricklin Neuron Model Complexity

L2 penalty to the loss function.

Even though the non-regular firing regimes did not show any advantage over us-
ing the regular firing regimes for the classification, they showed that a variety of
neuronal firing regimes are compatible with SGL training. RS and TO regimes, for
which the hyperparameters were optimized, reached the highest performances com-
pared to their respective neuron model’s other regimes that did not benefit from
an individual hyperparameter optimization. However, most non-regular regimes ob-
tained as similarly high test accuracies as the regular firing regimes. Future work
could find that individual hyperparameter tuning for the other non-regular regimes
further improves their performances. The tuning may depend on the data for classi-
fication, as can be seen for the FS and IB Izhikevich regimes that were not trainable
for the MNIST dataset but did well on the SHD data. Additionally, IB Izhikevich
networks did not always train successfully on the SHD data. In any case, this opens
the way to train neuronal network with various regimes, for example to simulate
excitatory-inhibitory neuron interactions as is observed in the biology [15].

The networks in this research project were limited to single layer networks with
strictly feedforward connections to study the fundamental impact of using more
complex neuron models when applying SGL. However, future research may reveal
further differences between firing regimes by adding recurrent connections or in-
crease the number of hidden layers, to better match biological neuronal networks
[57]. Additional layers and recurrent connections have already been shown to im-
prove performances of SNNs that implement SGL [61]. Therefore, the assumption is
not far off that larger networks with recurrent connection reveal more insights into
advantages and disadvantages of certain firing regimes.

The results are thus a proof of concept that such biologically plausible homogeneous
networks can be trained to perform operations on spike trains with structured vari-
ability similar to experimental data, which can in principle be extended beyond
classification.

Chapter 4 49

References

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2019.

[2] B. AlKhamissi, M. ElNokrashy, and D. Bernal-Casas, “Deep spiking neural
networks with resonate-and-fire neurons,” arXiv preprint arXiv:2109.08234,
2021.

[3] D. Auge, J. Hille, E. Mueller, and A. Knoll, “A survey of encoding techniques
for signal processing in spiking neural networks,” Neural Processing Letters,
vol. 53, no. 6, pp. 4693–4710, 2021.

[4] R. Berner, T. Gross, C. Kuehn, J. Kurths, and S. Yanchuk, “Adaptive dynam-
ical networks,” arXiv preprint arXiv:2304.05652, 2023.

[5] Z. Bing, C. Meschede, F. Röhrbein, K. Huang, and A. C. Knoll, “A survey of
robotics control based on learning-inspired spiking neural networks,” Frontiers
in neurorobotics, vol. 12, p. 35, 2018.

[6] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning,
4. Springer, 2006, vol. 4.

[7] L. Bonilla, J. Gautrais, S. Thorpe, and T. Masquelier, “Analyzing time-to-
first-spike coding schemes: A theoretical approach,” Frontiers in Neuroscience,
vol. 16, p. 971 937, 2022.

[8] R. Brette, “Computing with neural synchrony,” PLoS computational biology,
vol. 8, no. 6, e1002561, 2012.

[9] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire model
as an effective description of neuronal activity,” Journal of neurophysiology,
vol. 94, no. 5, pp. 3637–3642, 2005.

[10] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I. homoge-
neous synaptic input,” Biological cybernetics, vol. 95, pp. 1–19, 2006.

[11] B. Cramer, Y. Stradmann, J. Schemmel, and F. Zenke, “The heidelberg spik-
ing data sets for the systematic evaluation of spiking neural networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 33, no. 7, pp. 2744–
2757, 2020. [Online]. Available: https://zenkelab.org/resources/spiking-
heidelberg-datasets-shd/.

[12] R. Duarte, B. Zajzon, and T. Schulte to Brinke. “Functional neural archi-
tecture github repository (private).” (2023), [Online]. Available: https://
github.com/rcfduarte/func-neurarch/.

50

https://zenkelab.org/resources/spiking-heidelberg-datasets-shd/
https://zenkelab.org/resources/spiking-heidelberg-datasets-shd/
https://github.com/rcfduarte/func-neurarch/
https://github.com/rcfduarte/func-neurarch/

[13] J. K. Eshraghian, M. Ward, E. O. Neftci, et al., “Training spiking neural
networks using lessons from deep learning,” Proceedings of the IEEE, 2023.

[14] C. Frenkel, D. Bol, and G. Indiveri, “Bottom-up and top-down neural process-
ing systems design: Neuromorphic intelligence as the convergence of natural
and artificial intelligence,” arXiv preprint arXiv:2106.01288, 2021.

[15] R. C. Froemke, “Plasticity of cortical excitatory-inhibitory balance,” Annual
review of neuroscience, vol. 38, pp. 195–219, 2015.

[16] M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer per-
ceptron)—a review of applications in the atmospheric sciences,” Atmospheric
environment, vol. 32, no. 14-15, pp. 2627–2636, 1998.

[17] W. Gerstner and R. Brette. “Adaptive exponential integrate-and-fire model.”
(2009), [Online]. Available: http : / / www . scholarpedia . org / article /

Adaptive_exponential_integrate-and-fire_model.

[18] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal dynamics:
From single neurons to networks and models of cognition. Cambridge Univer-
sity Press, 2014.

[19] A. Grimaldi, A. Gruel, C. Besnainou, J.-N. Jérémie, J. Martinet, and L. U.
Perrinet, “Precise spiking motifs in neurobiological and neuromorphic data,”
Brain Sciences, vol. 13, no. 1, p. 68, 2022.

[20] A. Grüning and S. M. Bohte, “Spiking neural networks: Principles and chal-
lenges.,” in ESANN, Bruges, 2014.

[21] H. Hagras, A. Pounds-Cornish, M. Colley, V. Callaghan, and G. Clarke, “Evolv-
ing spiking neural network controllers for autonomous robots,” in IEEE Inter-
national Conference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, IEEE, vol. 5, 2004, pp. 4620–4626.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1026–1034.

[23] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on
neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

[24] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification and
hyperparameter optimization,” in Artificial intelligence and statistics, PMLR,
2016, pp. 240–248.

[25] N. Ketkar and N. Ketkar, “Introduction to keras,” Deep learning with python:
a hands-on introduction, pp. 97–111, 2017.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[27] V. Koren, G. Bondanelli, and S. Panzeri, “Computational methods to study in-
formation processing in neural circuits,” Computational and Structural Biotech-
nology Journal, 2023.

[28] L. Lapicque, “Recherches quantitatives sur l’excitation electrique des nerfs,”
J Physiol Paris, vol. 9, pp. 620–635, 1907.

51

http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model
http://www.scholarpedia.org/article/Adaptive_exponential_integrate-and-fire_model

[29] S. B. Laughlin, “Energy as a constraint on the coding and processing of sensory
information,” Current opinion in neurobiology, vol. 11, no. 4, pp. 475–480,
2001.

[30] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[31] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[32] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hyper-
band: A novel bandit-based approach to hyperparameter optimization,” The
journal of machine learning research, vol. 18, no. 1, pp. 6765–6816, 2017.

[33] Y. Mochizuki, T. Onaga, H. Shimazaki, et al., “Similarity in neuronal firing
regimes across mammalian species,” Journal of Neuroscience, vol. 36, no. 21,
pp. 5736–5747, 2016.

[34] R. Naud, N. Marcille, C. Clopath, and W. Gerstner, “Firing patterns in the
adaptive exponential integrate-and-fire model,” Biological cybernetics, vol. 99,
pp. 335–347, 2008.

[35] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking
neural networks,” IEEE Signal Processing Magazine, vol. 36, no. 6, pp. 51–63,
2019.

[36] B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Current
opinion in neurobiology, vol. 14, no. 4, pp. 481–487, 2004.

[37] S. Ostojic, “Interspike interval distributions of spiking neurons driven by fluc-
tuating inputs,” Journal of neurophysiology, vol. 106, no. 1, pp. 361–373, 2011.

[38] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-
performance deep learning library,” Advances in neural information processing
systems, vol. 32, 2019.

[39] H. Paugam-Moisy and S. M. Bohte, “Computing with spiking neuron net-
works.,” Handbook of natural computing, vol. 1, pp. 1–47, 2012.

[40] A. Payeur, J. Guerguiev, F. Zenke, B. A. Richards, and R. Naud, “Burst-
dependent synaptic plasticity can coordinate learning in hierarchical circuits,”
Nature neuroscience, vol. 24, no. 7, pp. 1010–1019, 2021.

[41] L. Perrinet, “On efficient sparse spike coding schemes for learning natural
scenes in the primary visual cortex,” BMC Neuroscience, vol. 8, no. 2, pp. 1–
1, 2007.

[42] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: Opportunities
and challenges,” Frontiers in neuroscience, vol. 12, p. 774, 2018.

[43] A. Pitti, M. Quoy, S. Boucenna, and C. Lavandier, “Brain-inspired model for
early vocal learning and correspondence matching using free-energy optimiza-
tion,” PLoS Computational Biology, vol. 17, no. 2, e1008566, 2021.

[44] L. Ramlow and B. Lindner, “Interspike interval correlations in neuron models
with adaptation and correlated noise,” PLoS computational biology, vol. 17,
no. 8, e1009261, 2021.

52

[45] D. Roggen, S. Hofmann, Y. Thoma, and D. Floreano, “Hardware spiking
neural network with run-time reconfigurable connectivity in an autonomous
robot,” in NASA/DoD Conference on Evolvable Hardware, 2003. Proceedings.,
IEEE, 2003, pp. 189–198.

[46] J. Rossbroich, J. Gygax, and F. Zenke, “Fluctuation-driven initialization for
spiking neural network training,” Neuromorphic Computing and Engineering,
vol. 2, no. 4, p. 044 016, 2022.

[47] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal repre-
sentations by error propagation,” California Univ San Diego La Jolla Inst for
Cognitive Science, Tech. Rep., 1985.

[48] S. Shinomoto, K. Shima, and J. Tanji, “Differences in spiking patterns among
cortical neurons,” Neural computation, vol. 15, no. 12, pp. 2823–2842, 2003.

[49] S. R. Shomali, S. N. Rasuli, M. N. Ahmadabadi, and H. Shimazaki, “Un-
covering hidden network architecture from spiking activities using an exact
statistical input-output relation of neurons,” Communications Biology, vol. 6,
no. 1, p. 169, 2023.

[50] R. A. Silver, “Neuronal arithmetic,” Nature Reviews Neuroscience, vol. 11,
no. 7, pp. 474–489, 2010.

[51] M. Van Gerven, “Computational foundations of natural intelligence,” Fron-
tiers in computational neuroscience, p. 112, 2017.

[52] A. Viale, A. Marchisio, M. Martina, G. Masera, and M. Shafique, “Carsnn: An
efficient spiking neural network for event-based autonomous cars on the loihi
neuromorphic research processor,” in 2021 International Joint Conference on
Neural Networks (IJCNN), IEEE, 2021, pp. 1–10.

[53] A. Viale, A. Marchisio, M. Martina, G. Masera, and M. Shafique, “Lanesnns:
Spiking neural networks for lane detection on the loihi neuromorphic proces-
sor,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), IEEE, 2022, pp. 79–86.

[54] X. Wang, X. Lin, and X. Dang, “Supervised learning in spiking neural net-
works: A review of algorithms and evaluations,” Neural Networks, vol. 125,
pp. 258–280, 2020.

[55] K. Yamazaki, V.-K. Vo-Ho, D. Bulsara, and N. Le, “Spiking neural networks
and their applications: A review,” Brain Sciences, vol. 12, no. 7, p. 863, 2022.

[56] A. Yanguas-Gil, “Coarse scale representation of spiking neural networks: Back-
propagation through spikes and application to neuromorphic hardware,” in
International Conference on Neuromorphic Systems 2020, 2020, pp. 1–7.

[57] D. Zambrano, R. Nusselder, H. S. Scholte, and S. M. Bohté, “Sparse computa-
tion in adaptive spiking neural networks,” Frontiers in neuroscience, vol. 12,
p. 987, 2019.

[58] F. Zenke, S. M. Bohté, C. Clopath, et al., “Visualizing a joint future of neuro-
science and neuromorphic engineering,” Neuron, vol. 109, no. 4, pp. 571–575,
2021.

[59] F. Zenke and S. Ganguli, “Superspike: Supervised learning in multilayer spik-
ing neural networks,” Neural computation, vol. 30, no. 6, pp. 1514–1541, 2018.

53

[60] F. Zenke and M. Halvagal. “Spytorch - a tutorial on surrogate gradient learning
in spiking neural networks.” (2019), [Online]. Available: https://github.
com/fzenke/spytorch/.

[61] F. Zenke and T. P. Vogels, “The remarkable robustness of surrogate gradient
learning for instilling complex function in spiking neural networks,” Neural
Computation, vol. 33, no. 4, pp. 899–925, 2021.

54

https://github.com/fzenke/spytorch/
https://github.com/fzenke/spytorch/

Appendix A

55

S. Ricklin Neuron Model Complexity

A.1 Supplementary results of MNIST and SHD

experiments

The following sections cover the results that were excluded from the main body of
the thesis report for the sake of brevity. The excluded parts contain the figures and
detailed descriptions of the MNIST and SHD Optuna hyperparameter optimization
studies (Sec. 3.1.1 and Sec. 3.2.1 respectively).

A.1.1 MNIST

Hyperparameter optimization

The results described here exclude the description of the LIF optimization study
which has already been explained in detail in Sec. 3.1.1 as an example descrip-
tion.

Izhikevich The Optuna study that used RS-Izhikevich SNNs (Fig. A.1) reached
peak network performances of acctrain ≈ 98.01% and acctest ≈ 96.68%. The mean
absolute difference between the train and test accuracies of those trials for which
acctest ≥ 20% was around 1.63%. We made the following observations about the
hyperparameters: overall, the Izhikevich SNNs were not as robust to hyperparameter
changes as the LIF networks. Nevertheless, the Izhikevich networks did reach high
accuracy values along the full range of the HL size, batch size, L2 penalty and the

Figure A.1: Optuna study similar to Fig. 3.2, except that here Izhikevich-SNNs
were trained on the MNIST dataset. Peak accuracies reached acctrain ≈ 98.01%
and acctest ≈ 96.68% for the train and test set respectively.

Chapter A 56

S. Ricklin Neuron Model Complexity

Figure A.2: Optuna study similar to figure 3.2, except that here AdEx-SNNs were
trained on the MNIST dataset. Peak accuracies reached acctrain ≈ 95.87% and
acctest ≈ 94.13% for the train and test set respectively.

SG scale. However, Optuna favored large values for the HL size and smaller values
for the batch size, L2 penalty and the SG scale. Again, if we look at the learning
rate sub-plot, values of 10−3 ≤ lr ≥ 10−2 did result in peak accuracy networks
whereas networks outside that range did visibly decrease in network performance.
For the Izhikevich SNNs the weight scale was the most influential as Ws ≤ 25 did
lead to chance-level accuracies in all trials. Weight scales of Ws > 300 did result
in a decrease in accuracies as well. The weight scale sub-plot indicates that almost
all chance-level accuracies in all the sub-plots were mainly caused by a too low
initial weight scale. Networks that resulted in accuracy values between chance-level
and peak accuracies can be attributed to either a sub-optimal learning rate or the
pruning and early stopping of trials.

AdEx The Optuna study that used TO-AdEx SNNs (Fig. A.2) reached peak net-
work performances of acctrain ≈ 95.87% and acctest ≈ 94.13%. The mean absolute
difference between the train and test accuracies of those trials for which acctest ≥ 20%
was around 0.59%. We made the following observations about the hyperparameters:
due to the fact that the majority of the trials only reached accuracies below 40%,
there was but one hyperparameter that guaranteed robust and good training of a
network. Only the L2 penalty sub-plot shows trials that reached peak accuracies
with low and high values. All other hyperparameters indicate clear ranges in which
AdEx SNNs learned better than for other values. Again, when inspecting the data
and the figure, the weight scale played the most important role for learning. Here,
only weight scales in the rough range of [750, 1500] led to network models with peak

Chapter A 57

S. Ricklin Neuron Model Complexity

Figure A.3: Optuna study similar to Fig. 3.2, except that here LIF-SNNs were
trained on the Spoken Digits dataset. Peak accuracies reached acctrain ≈ 98.89%
and acctest ≈ 85.21% for the train and test set respectively.

accuracies. Other weight scale values resulted in chance-level networks or them be-
ing close to it. Generally, large values for the HL size, learning rate and values in
the medium range for the batch size and SG scale are shown by Optuna to result in
peak accuracy networks.

A.1.2 Heidelberg Spoken Digits

Hyperparameter optimization

The results reported here supplement the summarized results in Sec. 3.2.1.

LIF The Optuna study that used LIF SNNs (Fig. A.3) reached peak network per-
formances of acctrain ≈ 98.89% and acctest ≈ 85.21%. The mean absolute difference
between the train and test accuracies of those trials for which acctest ≥ 20% was
around 14.22%. We made the following observations about the hyperparameters:
the results of LIF SNNs trained on the SHD data do indicate that the networks
learned well with small and large values for the HL size and the SG scale. These
result are similar to the LIF Optuna study from the MNIST dataset (Fig. 3.2). How-
ever, the results also indicate that the LIF SNNs only learned well with a low batch
size, learning rate, L2 penalty and weight scale. Furthermore, the results show that
training on the SHD data was more difficult because there were more trials whose
accuracies ranged between the peak and chance-level ones. Finally, the differences
between the train and test accuracies were quite higher, compared to the results of
the MNIST-LIF Optuna study (Fig. 3.2).

Chapter A 58

S. Ricklin Neuron Model Complexity

Figure A.4: Optuna study similar to Fig. 3.2, except that here Izhikevich-SNNs
were trained on the Spoken Digits dataset. Peak accuracies reached acctrain ≈
75.45% and acctest ≈ 83.00% for the train and test set respectively.

Izhikevich The Optuna study that used RS-Izhikevich SNNs (Fig. A.4) reached
peak network performances of acctrain ≈ 75.45% and acctest ≈ 83.0%. The mean
absolute difference between the train and test accuracies of those trials for which
acctest ≥ 20% was around 03.14%. We made the following observations about the
hyperparameters: the results do not indicate that the Izhikevich SNNs were invariant
to any of the search space ranges of the hyperparameters. All of the hyperparameters
did influence the network’s learning capabilities either weakly or strongly. Here,
larger values for the HL size, medium ranged values for the batch size and learning
rate, as well as lower values for the L2 penalty, weight scale (except 1) and the SG
scale seemed to have caused peak performances. Surprisingly, some of the trials
returned higher classification accuracy on the test set than on the train set. That
is uncommon because the test set should be more difficult and novel to classify
compared to the train set.

AdEx The Optuna study that used TO-AdEx SNNs (Fig. A.5) reached peak net-
work performances of acctrain ≈ 62.08% and acctest ≈ 65.52%. The mean absolute
difference between the train and test accuracies of those trials for which acctest ≥ 20%
was around 3.37%. We made the following observations about the hyperparameters:
the results show that the training of those networks was more sensitive compared
to the MNIST-AdEx SNNs or the SHD-Izhikevich SNNs. The AdEx results further
indicate that the model was slightly invariant to changes of the L2 penalty. Conclud-
ing, the results indicate that AdEx SNNs required large HL sizes, a medium valued
learning rates, small batch sizes and SG scales, as well as a very narrow range for

Chapter A 59

S. Ricklin Neuron Model Complexity

Figure A.5: Optuna study similar to Fig. 3.2, except that here AdEx-SNNs were
trained on the Spoken Digits dataset. Peak accuracies reached acctrain ≈ 62.08%
and acctest ≈ 65.52% for the train and test set respectively.

the initial weight scales. The networks were also very sensitive to the weight scale
which should be set around 35. Similar to the results from the Izhikevich SNNs
above (Fig. A.4), the classification accuracies of AdEx SNNs for the train and test
set were very close to one another, considerably closer than the accuracy differences
from the LIF SNNs (Fig. A.3).

Chapter A 60

S. Ricklin Neuron Model Complexity

A.2 Random Manifolds Dataset

As a third way of comparing the Izhikevich and AdEx SNNs to the LIF SNNs, next
to the MNIST and SHD experiments (Sec. 3.1 and Sec. 3.2 respectively), we wanted
to train Izhikevich and AdEx network models on synthetic data consisting of smooth
Random Manifolds (RandMan) [61].

Zenke et al. [61] created this ”synthetic classification data set” as another bench-
mark to test the classification abilities of LIF SNNs using SGL [61]. Also, see
https://github.com/fzenke/randman for their code that we adapted to generate the
data.

The goal for this third dataset was to have a more difficult dataset than the MNIST
and SHD datasets. A requirement here was, that the data is easy to overfit on and
thus difficult to generalize on. We explored various configurations to simulate data
that suited our needs.

We excluded the results of the experiments on this dataset from the main corpus
of the thesis because the results did not return any additional valuable insights.
Still, the results of the regime comparisons are reported here for completeness. We
skipped the reporting of detailed Optuna results and neuron statistics because the
outcome of the first two experiments can also be derived by studying the results
from the regime comparisons (Sec.A.2.3).

Configuration of the RandMan dataset

The simulation of the RandMan data was configured as follows: the amount of input
neurons was set to 20 neurons and the amount of classes was set to 10 to match
the number of classes of the MNIST and SHD experiments. We used a manifold
dimension value of 1 with α = 1 and fr = 5Hz. With the comparatively small
input size (to MNIST and SHD), the size of the train and test set were also chosen
to be smaller with 800 and 100 samples respectively. In hindsight, more samples
could have let to improved generalization capabilities of the Izhikevich and AdEx
models, but would have likely let to more overfitting of at least the LIF as well. For
more information on how to generate the data, we refer to the GitHub link above
from Zenke et al. [61].

A.2.1 Hyperparameter Tuning

In summary, the hyperparameter search space allowed the LIF-SNNs to reach high
training accuracies, whereas the Izhikevich and AdEx did fail to reach train accura-
cies of acctrain ≥ 60%. However, the LIF networks did seem to overfit because the
test accuracies were on average 28.6% lower than the train accuracy, only reaching
a test accuracy of acctest ≈ 59.8% in the best trial. Except for the weight scale and
learning rate, LIF SNNs were less dependent on specific hyperparameter values to
reach their respective peak performances. The Izhikevich and AdEx networks did
require a very narrow range for the weight scale to be able to learn any represen-
tations which led to Optuna loosing a considerable number of trials to chance-level
performances. In turn, that lead to less informative results for the other hyperpa-
rameters.

Chapter A 61

https://github.com/fzenke/randman

S. Ricklin Neuron Model Complexity

Dataset Model
Hyperparameter

learning weight SG batch HL L2
rate scale scale size size penalty

RandMan
LIF 0.01 3 30

150 800 10−6Izh. 0.017 125 150
AdEx 0.01 1700 70

Table A.1: Chosen hyperparameter for the RandMan and neuron model pairs. The
abbreviations scale of SG and HL size refer to the scale of the surrogate gradient
during the backpropagation step and the size of or number of neurons in the hidden
layer respectively. The weight scale refers to the scaling of the network weights and
applies to all weight matrices.

The chosen hyperparameter values to train the SNNs on in the subsequent experi-
ments are reported in Tab. A.1.

A.2.2 Firing Regime Drift

All networks trained for 50 epochs. An inspection of the classification losses shows
(Fig. A.6) that the training of the LIF and Izhikevich networks converged because
their train loss did not further improve. However, for both networks the test loss
did not improve much after the first couple of epochs. The 50 epochs of training
were too short for the AdEx network to converge, their train loss was still improving
(decreasing) slightly. Interestingly, the AdEx’s test losses followed the train losses
very closely until the last epoch. Thus, if the AdEx SNN would train for longer,
higher train and test accuracies than shown below in Sec. A.2.3 would be likely.

Fig. A.7 shows the neuronal metrics of the LIF SNN. The figures for the Izhikevich
and the AdEx were omitted because there was no visible change in any of their
distributions. From the figure we can see that the LIF stays in a sparse spiking
regime as was similarly observed in Sec. 3.1.2 and Sec. 3.2.2.

A.2.3 Firing Regime Comparisons

Fig. A.8 shows that the LIF SNNs did overfit on the train set and had problems gen-
eralizing to the unseen test data. In general, the Izhikevich and the AdEx networks
reached bad performances, with the best Izhikevich networks (RS and IB regimes)
reaching train accuracies close to the LIF’s test accuracies.

In Fig. A.9 the previously observed trend is again visible that generalization capa-
bilities are worse for the LIF and better for the Izhikevich and AdEx. However,
that observation is somewhat flawed because the performances of the Izhikevich
and AdEx were not very good, leaving a smaller margin between train and test
accuracies. It makes sense that the closer the network are overall to chance-level
performance the smaller the difference between train and test accuracy.

Chapter A 62

S. Ricklin Neuron Model Complexity

Figure A.6: RandMan classification losses and weight distribution of LIF, Izhikevich
and AdEx SNNs (top to bottom). For a detailed description of the figure panels,
see Fig. 3.3.

Figure A.7: Network and neuronal statistics of an Izhikevich network trained on
RandMan data. The trial reached a train and test accuracy of 96.79% and 56.90%
respectively. Samples without spikes before and after training: 2% and 0% respec-
tively. For a detailed description of the figure panels, see Fig. 3.3.

Chapter A 63

S. Ricklin Neuron Model Complexity

Figure A.8: Test accuracies of various firing regimes, trained on RandMan data.
Each regime was trained 10 times.

Figure A.9: Test accuracies of various firing regimes, trained on RandMan data.
Each regime was trained 10 times.

Chapter A 64

	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Supervised Learning and Backpropagation
	Surrogate Gradient Learning
	Motivation

	Choice of Neuronal Models
	LIF
	Izhikevich
	AdEx

	Outlook

	Methods
	Network Architecture
	Spiking Hidden-Layer and Non-Spiking Readout-Layer
	Weight Initialization

	Hardware
	Surrogate Gradient Learning
	Loss function
	Hyperparameter Tuning

	Discretized Neuron Models
	LIF
	Izhikevich
	AdEx

	Spiking Metrics
	Input Spiking Activity and Datasets
	Input Encoding of MNIST data

	Experiments
	MNIST
	Hyperparameter Tuning
	Firing Regime Drift
	Firing Regime Comparisons

	Spoken Heidelberg Digits
	Hyperparameter Optimization Studies
	Firing Regime Drift
	Firing Regime Comparisons

	Discussion
	Conclusion

	References
	
	Supplementary results of MNIST and SHD experiments
	MNIST
	Heidelberg Spoken Digits

	Random Manifolds Dataset
	Hyperparameter Tuning
	Firing Regime Drift
	Firing Regime Comparisons

